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abstract

Data center failures have become increasingly problematic due to the plethora of critical

web and storage services hosted in today’s data centers. Frequently, the problem lies in the

data center network, which is prone to both functional and performance failures caused by

hardware or software faults, misconfiguration, overload, or other issues with links and devices.

Preventing such failures is challenging, because data center network operators lack a

formal understanding of how their design and operational decisions impact the frequency

of network problems. Furthermore, current frameworks for verifying and maintaining the

functionality and performance of data center networks are incomplete and/or inefficient.

Consequently, this thesis explores how to analyze an organization’s network management

practices and efficiently guarantee that a data center network functions correctly and offers

reasonable performance amidst changes in infrastructure, configuration, and workload.

We first present the design of a management plane analytics (MPA) framework which

uncovers the relationships between network management practices and the frequency of

network problems. By applying MPA to over 850 data center networks operated by a large

online service provider, we identify several practices that strongly impact the frequency of

problems in these networks, including: the number of control plane configuration changes

and the number of device types (i.e., the presence of middleboxes).

Armed with this information, we explore how to design abstractions that aid in ensuring

the correct and performant operation of a data center’s control plane and middleboxes. We

introduce an abstract representation for control planes that efficiently models a data center

network’s forwarding behavior under all possible link/device failure scenarios. This allows

us to verify important functional invariants—e.g., traffic between subnets S1 and S2 always

traverses a middlebox—three to five orders of magnitude faster than current verification

tools. Additionally, we introduce a middlebox state management framework that allows

network operators to realize a “one-big-middlebox” abstraction and avoid middlebox-induced

functional and performance failures in the presence of hardware/software faults or overload.



ix

Our framework guarantees the safety and consistency of transferred/replicated middlebox

state with minimal latency and resource overhead.
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1 introduction

Tremendous growth in web services, big data analytics, storage-as-a-service, and other

resource-intensive workloads has fueled a steady increase in the prevalence, scale, and

importance of data centers. Today’s data centers host a plethora of critical services that

organizations and individuals rely on daily for commerce, transportation, communication,

social interaction, and much more.

As our dependence on data centers has increased, so has the impact of data center failures.

A 2016 survey of 49 US-based organizations found that the average cost of a data center

outage is $740K [29]. Failures in large cloud data centers, such as Amazon EC2, are even

more problematic due to the large number of popular web services hosted in these data

centers: e.g., over 4% of the Alexa top one million websites are, at least partially, hosted in

Amazon EC2 [78].

One of the frequent elements that fails is the data center network [50, 126, 145, 146]. In

particular, two types of network failures commonly occur:

• Functional failures occur when the network does not forward, filter, monitor, or modify

network traffic as expected. Such failures impact reachability, security, and efficiency.

For example, when a pair of servers cannot communicate—despite a network operator’s

intent that such communication be allowed—we say a functional failure has occurred.

The inverse (i.e., two servers can communicate despite an operator’s intent that such

communication be blocked) is also a functional failure. Other examples include security

alarms not being raised for malicious traffic that matches known signatures and traffic

volumes (used for billing purposes) being over- or underestimated beyond standard

tolerances.

• Performance failures occur when throughput, latency, loss, or other quality of service

measures fall outside acceptable ranges. For example, when the latency between a

pair of servers exceeds some threshold (e.g., 100ms), we say a performance failure has
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occurred.

These two types of failures may be caused by a variety of low-level issues, including

hardware or software faults, configuration errors, overload, or other problems with network

links and devices. Several recent studies [75, 113] have examined the frequency of such issues

in data center networks. However, little has been done to relate these failures back to the

high-level design and operational decisions made by network operators—e.g., the diversity

of devices used in the network or the extent to which configuration changes are automated.

Consequently, it remains challenging for operators to determine the best ways to manage

their data center networks.

Furthermore, many of the tools currently available to network operators for verifying

network functionality (e.g., reachability) and maintaining the performance and availability of

specialized packet processing elements (i.e., middleboxes) operate at a low-level of abstraction.

This leads to inefficiencies that force data center network operators to make undesirable

trade-offs. For example, operators must either limit network correctness checks to a small set

of possible infrastructure faults (e.g., all single link failures) or wait an extended period of time

(days or weeks) while the network’s configuration is fully verified. In the case of middleboxes,

operators must compromise on performance and availability, resource efficiency, or correctness

(e.g., in-progress connections passing through a load balancer may be abruptly terminated);

all three cannot be achieved simultaneously using currently available frameworks.

To address these gaps, we focus on answering two important questions in this thesis:

1. How do network operator’s design and operational decisions impact the frequency of

functional and performance failures in data center networks?

2. How can we design abstractions to efficiently guarantee that a data center network

functions correctly and offers reasonable performance amidst changes in infrastructure

(e.g., link or device failures), configuration, and workload?

The next two sections (Sections 1.1 and 1.2) describe our goals and the associated

challenges in more depth. At the end of the chapter (Section 1.3), we summarize the key
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contributions of this thesis.

1.1 Identifying Problematic Network Management Practices

Careful design and operation of a data center network is essential to avoiding functional and

performance failures. For example, a network operator’s choice of devices—such as the vendor

and model of switches, routers, and middleboxes—can impact the frequency of hardware or

software faults [75, 113]. Similarly, the design of the network control plane—such as which

protocols are used—can impact the complexity of switch and router configurations [40], thus

increasing (or decreasing) the likelihood of a configuration error. Both issues may lead to

functional or performance failures that negatively impact users and applications.

Unfortunately, network operators and researchers alike currently lack a systematic under-

standing of the best practices for managing data center networks. The design and operational

practices network operators employ today are primarily based on operators’ experience and

vendors’ recommendations. Consequently, there is a great diversity of opinion with regards

to the impact of specific management practices on the frequency of network problems. Our

survey of 51 network operators1 shows clear consensus for just one practice (Figure 1.1): the

number of configuration changes has a high impact on the frequency of network problems.

Otherwise, operator perceptions are mixed: e.g., the fraction of operators who said the number

of device models and inter-device configuration complexity have low impact is roughly the
1We recruited operators from the North American Network Operators Group (NANOG) mailing list (45

operators), the University of Wisconsin-Madison network engineering team (4 operators), and the network
operations team of a large online service provider (2 operators).
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Figure 1.1: Results of network operator survey
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Infer 
management 

practices 

Identify causal relationships between 
practices and problem frequency 

Construct a predictive model of 
problem frequency based on practices 

Config snapshots 

Problem tickets 

Inventory records 

Figure 1.2: Steps in management practice analytics

same as the fraction who said these practices have high impact. Even operators from the

same organization have differing opinions.

Although the adage “there’s no substitute for experience” may be true when it comes to

managing data center networks,2 we argue that formally characterizing the impact of network

management practices on the frequency of problems in data center networks can help network

operators reduce the frequency and severity of functional and performance failures. However,

there are several questions we must answer to enable such an analysis:

• How do we determine what management practices are used in data center networks?

Management practices are rarely directly recorded. Even if expected practices are

documented, there is no guarantee operators actually follow these practices.

• How do we draw meaningful conclusions from limited data? The number of available

snapshots of a data center network’s design and operation is often limited, and some

snapshots may be missing due to incomplete or inconsistent logging.

• How do we account for skew and overlap in management practices? Skew makes it

challenging to accurately identify the impact of less common practices, while overlap

makes it challenging to determine the impact of individual practices.

In Chapter 2, we introduce a management plane analytics (MPA) framework (Figure 1.2)

that addresses these questions and uncovers the relationships between management practices

and the frequency of network problems. An organization can apply MPA to its data center

networks to: (1) determine which practices cause an increase, or decrease, in the frequency
2In our survey, operators wrote “skill levels of operators” and “documentation and training provided” as

other practices they believe to have a high impact on the frequency of network problems.
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of network problems; and (2) develop a predictive model of problem rate, based on manage-

ment practices, to aid what-if analysis. The former is achieved using a quasi-experimental

design technique known as propensity score matching [135, 136] (Section 2.4), while the

latter is achieved using decision tree learning algorithms augmented with boosting [67] and

oversampling techniques (Section 2.5). The knowledge gained from MPA can help network

operators select and refine the management practices they use in current and future data

center networks.

By applying MPA to over 850 data center networks operated by a large online service

provider (OSP), we uncover several management practices that strongly influence the number

of problems these networks experience, including: network size, the number and type

of configuration changes, and the number of device types (e.g., router, switch, firewall,

load balancer, etc.). We also find several instances where network operators’ perceptions

(Figure 1.1) conflict with reality: e.g., the fraction of changes where an access control list

(ACL) is modified has a non-trivial impact on the frequency of problems despite a majority

opinion that the impact is low.

1.2 Abstractions for Guaranteeing Network Functionality

and Performance

The ability to change practices that contribute to data center network failures varies based on

the class of practice and the needs of the organization. Adjusting design practices (e.g., the

number and type of devices) requires deploying new data centers or significantly overhauling

existing data center networks. In some cases, adjustments in design are limited by workload

demands. For example, the number of end hosts the network must support places a lower

bound on the number of routers and switches it must contain. Similarly, the security and

efficiency requirements of applications may dictate that certain types of middleboxes be

present in the network. Operational practices can be adjusted more easily: e.g., configuration
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changes can be aggregated or reduced by more carefully planning network reconfigurations.

However, such adjustments may have other repercussions: e.g., configuration errors may be

more likely when the size and scope of a configuration change is larger. Moreover, even if

best practices are followed, problems will inevitably arise: hardware will fail, operators will

make mistakes, and operating conditions will change.

Consequently, we believe that adjustments in management practices (informed by MPA)

must be accompanied by the introduction of new frameworks designed to guarantee that a data

center network functions correctly and performs well, even amidst changes in infrastructure,

configuration, or workload. In particular, we focus on designing abstractions that aid in

ensuring the correct and performant operation of two crucial components of data center

networks: (1) the control plane and (2) middleboxes.

We focus on these components for two reasons. First, our application of MPA to the

data center networks of a large OSP (Chapter 2), as well as other research [75, 113, 147],

shows that control plane configuration changes and middleboxes both have a strong impact

on the frequency of problems in data center networks. Second, both routers (which run the

control plane) and middleboxes play an important role in meeting the needs of applications

and end hosts, so it is critical to ensure both are robust. For example, we must ensure that:

(1) routers always forward traffic to the desired middleboxes, and (2) middleboxes always

process this traffic correctly and efficiently. However, routers and middleboxes operate very

differently, so we need separate but complementary abstractions to ensure these devices do

not cause functional or performance failures in data center networks.

Checking Control Plane Correctness. Today’s data center networks generally rely on

a traditional distributed control plane, with each router running one or more distributed

routing protocols—e.g., Open Shortest Path First (OSPF) and Border Gateway Protocol

(BGP)—to compute forwarding paths and generate the network’s data plane.3 Additional
3Software-defined networking (SDN) has not been widely adopted in data centers’ physical infrastructure,

because SDN’s use of a logically centralized controller eliminates the inherent scalability and fault tolerance
of a distributed control plane.
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Data 
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Figure 1.3: State-of-the-art methods for verifying data center networks

mechanisms such as access control lists, route filters, and route redistribution may also be

used to satisfy various functional requirements.

Unfortunately, control plane configurations are notoriously buggy [64, 150], due in part

to the complexity of configuring routing protocols and their interactions [40, 99, 106]. While

functional failures sometimes occur as soon as a buggy configuration is applied (and routing

has re-converged), other errors manifest only during infrastructure faults. These “hidden”

errors can have catastrophic consequences for data centers [138]. Another large class of

functional failures arise when refactoring a network’s control plane to eliminate problematic

design practices: e.g., consolidating routing domains to reduce complexity [40] or replacing

devices to reduce the number of vendors and models in the network (Section 2.4).

Proactively detecting errors that only manifest during infrastructure faults, as well as

identifying differences between an original and re-factored control plane, is impossible, or

at least impractical, using existing verification tools [66, 87, 88, 91, 105]. In particular,

existing tools (Figure 1.3) are either: (1) limited to checking the data center network’s

current data plane, or (2) must generate the data plane for every possible infrastructure

fault by simulating the low-level message exchanges of individual routing protocols. Ideally,

a network operator would proactively check each new control plane configuration before

applying it to the network; given that thousands of configuration changes may occur each

month (Section 2.2), such checks must happen in a matter of minutes in order to be practical.

To efficiently check the correctness of data center network control planes, we must address

the following questions:
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• How do we concisely model all possible data planes that may result from a given control

plane configuration? We must capture the behavior of multiple routing protocols—e.g.,

we show in Section 2.2 that many data centers use both BGP and OSPF—and their

complex interactions [99, 106] without individually modeling each data plane.

• How do we encode the invariants we want to check such that they can be quickly

verified under arbitrary infrastructure faults using our model? We must be able to

handle a variety of security and availability invariants—e.g., traffic between subnets

S1 and S2 is always blocked or always traverses a middlebox—as well as control plane

equivalence—i.e., verify that two control planes generate the same data plane under

arbitrary infrastructure faults.

In Chapter 3, we introduce an abstract representation for control planes (ARC) that

addresses these issues. ARC abstracts the mechanics of individual routing protocols and

uses a series of weighted digraphs to model the protocols’ collective impact on the network’s

data plane. Figure 1.4 shows an example network control plane and its corresponding ARC.

Such modeling—which we describe in detail in Sections 3.3 and 3.4—is made possible by

our observation that data center networks tend to use a limited set of routing protocols

which interact in very specific ways (Section 3.6). With ARC, verifying key invariants

boils down to computing simple graph characteristics, such as connected components and

max-flow (Section 3.5.1). Checking the equivalence of two control planes is simply a matter

of comparing the edges and weights of the graphs in each control plane’s ARC (Section 3.5.2).

By applying ARC to a subset of the data center networks studied in Chapter 2, we show that

such proactive analyses generally run in a matter of seconds, which is three to five orders of

magnitude faster than state-of-the-art tools.

Maintaining Middlebox Functionality and Performance. While ARC ensures that

routers correctly forward and filter traffic, even in the presence of infrastructure faults, ARC

does not ensure that middleboxes behave correctly. Middleboxes, also known as network

functions, perform rich packet processing to offer security, performance, and monitoring
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Figure 1.4: Example network with a single OSPF instance and its ARC

capabilities not available on routers and switches. Unlike routers and switches, middleboxes’

operations are typically: (1) complex—e.g., deep packet inspection and elaborate packet

modifications are common; and (2) stateful—i.e., the processing of one packet influences

the processing of a later packet from the same connection or end host. Consequently,

it is challenging to maintain suitable middlebox performance and transparently recover

from middlebox-related problems (e.g., connectivity errors, hardware failures, and software

issues [75, 113]).

One step towards addressing these issues is to replace individual hardware appliances—the
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Figure 1.5: A scenario requiring scale-out and special handling of middlebox state to avoid
performance and functional failures: The load balancer (e.g., HAProxy [10]) assigns incoming
connections to application servers (e.g., S1 and S2) in a round robin fashion. For each active
flow, the load balancer maintains a connection object with source IP and port and the name
of the selected server. It also maintains a record of which server should receive the next
connection. If a second load balancer instance is launched and the blue (darker) flow is
reassigned to the second instance to avoid performance issues, then the flow-specific state
must be moved to ensure active connections are not broken.

norm in today’s data center networks [75, 113]—with a collection of software instances that

expose a “one-big-middlebox” abstraction—i.e., the illusion of a monolithic, always available,

predictably performing middlebox. With such a deployment model, new middlebox instances

can be quickly launched on compute nodes anywhere in the data center, eliminating the long

provisioning and repair times associated with hardware appliances [113]. Furthermore, by

centralizing the middlebox configuration interface, such an abstraction reduces the likelihood of

configuration incompatibilities between middlebox instances (e.g., mismatched cryptographic

keys [113]).

However, the fluidity of software middleboxes must not be taken for granted. Great

care must be taken in managing the lifecycle of middlebox instances and the distribution

of traffic among them, lest a new class of problems arise due to missing or inconsistent

middlebox state. As an example, consider a scenario where a layer-4 load balancer (LB1) is

distributing incoming connections among a pool of application servers (Figure 1.5). If the

load balancer’s performance approaches a critical threshold, we must launch a new instance

(LB2) and reroute some traffic to the new instance to preserve the abstraction of a monolithic,
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predictably performing middlebox. However, rerouting in-progress connections to the new

instance may cause those connections to be terminated, because the new instance lacks the

necessary state indicating which server a connection has been assigned to. Thus, in an effort

to avoid a performance failure we have caused a functional failure. As an alternative, we

could route only new connections to the new load balancer instance [144], but the load on

the original instance would not be reduced until some in-progress connections complete and

a performance failure may still occur.

As the above example illustrates, providing a one-big-middlebox abstraction without

compromising on performance or functionality requires special handling of middlebox state.

In particular, we must ensure that the middlebox state associated with a specific set of traffic

is available at the middlebox instance responsible for processing that traffic. To achieve this,

we must answer several important questions:

• How do we efficiently make a middlebox instance’s state available at another instance?

Middlebox state may be quite complex, and traffic may be arbitrarily divided among

middlebox instances.

• How do we avoid race conditions? Packets may continue to arrive at a middlebox

instance while we are making its state available at another instance; unless care is

taken, the state available at each middlebox instance may be incomplete or incorrect.

• How do we accommodate a variety of middleboxes with minimal changes? Data center

networks contain a variety of middlebox types, vendors, and models (Section 2.2), so

accommodating a wide range of middleboxes in a largely non-intrusive fashion is key to

making middlebox state management practical.

In Chapter 4, we introduce a novel middlebox state management framework, called

OpenNF, that addresses these issues. OpenNF allows middleboxes’ internal state to be

replicated, transferred, or shared at fine granularity to facilitate the realization of a one-

big-middlebox abstraction. The complexities of distributed state control are handled by

a logically centralized OpenNF controller that, when requested, guarantees loss-freedom,
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order-preservation, and various levels of consistency for middlebox state and packets. Using

traces of traffic exchanged with a cloud data center [78], we show that OpenNF can prevent

both functional and performance failures by safely transferring state for hundreds of flows in

just a few hundred milliseconds. Furthermore, the packet processing times at middleboxes

increase by less than 6% during such transfers.

1.3 Contributions

In summary, this thesis makes the following contributions:

• We have developed a management plane analytics (MPA) framework [18, 74] that

uncovers the relationships between network operators’ management practices and

the frequency of problems in data center networks. By applying MPA to over 850

data center networks operated by a large online service provider, we have uncovered

several practices—e.g., network size, number and type of configuration changes, and

the presence of middleboxes—that strongly influence the number of problems these

networks experience; we have also found several instances where network operators’

perceptions conflict with reality.

• We have designed an abstract representation for control planes (ARC) [1, 72] that

models data center networks’ forwarding and filtering behaviors at a higher level than

today’s network verifiers, thus enabling more direct proactive analysis. ARC enables

network operators to verify that key functional invariants always hold, even in the

presence of arbitrary infrastructure faults, in just a few seconds.

• Lastly, we have built a middlebox state management framework [28, 71, 73], called

OpenNF, that provides safe and efficient control of middlebox state. This allows quick,

safe, and fine-grained reallocation of flows across middlebox instances in order to

prevent infrastructure fault or overload-induced failures. OpenNF was awarded the

Internet Research Task Force (IRTF) Applied Network Research Prize for its relevance



13

to ongoing standardization efforts.

We have made the code for all of these frameworks publicly available [1, 18, 28] to allow

network operators to apply our solutions to their own data center networks.
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2 identifying problematic practices using mpa

Our first step toward reducing failures in data center networks is to understand how network

operator’s design and operational decisions impact the frequency of network problems. Such an

analysis can help operators improve their network management practices, as well as identify

network management challenges that require new solutions.

We begin this chapter (Sections 2.1 and 2.2) with a systematic characterization of the

management practices employed in over 850 data center networks managed by a large online

service provider (OSP). We present detailed definitions of practices in Section 2.1.2. This

characterization provides the first in-depth look into the management practices used in

modern data center networks. We find significant diversity in management practices—even

within this single organization. This provides further evidence of the networking community’s

limited understanding of which practices are “best” (an issue we raised in Section 1.1)

and highlights the importance of analyzing how network management practices impact the

likelihood of network failures.

The rest of this chapter (Sections 2.3 through 2.5) presents a management practice analytics

(MPA) framework that an organization can use to identify how its management practices

impact the health of its networks (i.e., the number of problems its networks experience). In

particular, MPA helps network operators derive the top k management practices that impact

network health. Armed with this information, operators can develop suitable best practices

to improve organization-wide design and operational procedures. MPA also helps operators

predict, in an ongoing fashion, what impact a specific set of management practices will have

on the health of individual networks. This goes beyond focusing on the top practices; it

incorporates the effects of one-off deviations from established procedures, as well as the effects

of management practices whose impact on network health manifests only in a narrow set of

situations. Armed with such metrics, operators can focus on improving their management

practices in networks that are predicted to have more problems.
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2.1 Inferring Management Practices

One of the primary challenges in analyzing management practices is that they are not

explicitly logged. While the control and date planes can be queried to quantify their

behavior [27, 58, 80, 104, 134], no such capability exists for management practices. This gap

stems from humans being the primary entities responsible for network management. Operators

translate high-level intents into a suitable setup of devices, protocols, and configurations to

create a functional, healthy network. Even when recommended procedures are documented,

there is no guarantee that operators adhere to these practices.

Fortunately, we are able to infer management practices from other readily available data

sources. In this section, we describe these sources and the management practice metrics we

can infer.

2.1.1 Data Sources

We can infer management practices and network health from three data sources that are

commonly available. Such data sources have already been used in prior work, albeit to study

a limited set of management practices [41, 92, 115, 137]. We build upon these efforts to

provide a more thorough view of management practices and their relationship to network

health. The data sources are:

1) Inventory records. Most organizations directly track the set of networks they manage,

and the role the networks play. Organizations that manage a large number of devices typically

do not view all devices as belonging to one network, even if the devices are housed within

the same building; instead they view the devices as partitioned across multiple networks. A

network in this context is a collection of devices that either connects compute equipment that

hosts specific workloads (e.g., a Web service) or connects other networks to each other or the

external world. Organizations record the vendor, model, location, and type (switch, router,

load balancer, etc.) of every device in their deployment, and the network it belongs to. This
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data can be used to infer a network’s basic composition and purpose.

2) Device configuration snapshots. Network management systems (NMS) track changes

in device configurations to aid network operators in a variety tasks, such as debugging config-

uration errors or rolling back changes when problems emerge. NMSes such as RANCID [24]

and HPNA [11] subscribe to syslog feeds from network devices and snapshot a device’s

configuration whenever the device generates a syslog alert that its configuration has changed.

Each snapshot includes the configuration text, as well as metadata about the change, e.g.,

when it occurred and the login information of the entity (i.e., user or script) that made the

change. The snapshots are archived in a database or version control system.

3) Trouble ticket logs. When users report network problems, or monitoring systems raise

alarms, a trouble ticket is created in an incident management system. The ticket is used

to track the duration, symptoms, and diagnosis of the problem. Each ticket has a mix of

structured and unstructured information. The former includes the time the problem was

discovered and resolved, the name(s) of device(s) causing or effected by the problem, and

symptoms or resolutions selected from pre-defined lists; the latter includes syslog details and

communication (e.g., emails and IMs) between operators that occurred to diagnose the issue.

2.1.2 Metrics

Using these data sources, we can infer management practices and network health, and

model them using metrics. We broadly classify management practices into two classes

(Table 2.1): design practices are long-term decisions concerning the network’s structure and

provisioning (e.g., selecting how many switches and from which vendors); operational practices

are day-to-day activities that change the network in response to emerging needs (e.g., adding

subnets).

Design practices. Design practices influence four sets of network artifacts: the network’s

purpose, its physical composition, and the logical structure and composition of its data and
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Design practices
D1. Number of services, users, or networks connected
D2. Number of devices, vendors, models, types (e.g.,

switch, router, firewall), and firmware versions
D3. Hardware and firmware heterogeneity
D4. Number of data plane constructs used (e.g., VLAN

spanning tree, link aggregation), and instance counts
D5. Number and size of BGP & OSPF routing instances
D6. Intra- and inter-device config reference counts

Operational practices
O1. Number of config changes and devices changed
O2. Number of automated changes
O3. Number and modality of changes of specific types

(e.g., interface, ACL, router, VLAN)
O4. Number of devices changed together

Table 2.1: Management practice metrics

control planes. The metrics we use to quantitatively describe a network’s purpose and its

physical composition are rather straightforward to compute, and are listed in lines D1 and

D2 in Table 2.1. We synthesize these metrics to measure a network’s hardware heterogeneity

using a normalized entropy metric (line D3): −
∑
i,j pijlog2pij
log2N

, where pij is the fraction of

devices of model i of type j (e.g., switch, router, firewall, load balancer) in the network, and

N is the size of the network. This metric captures the extent to which multiple models of

the same type of device are used; a value close to 1 indicates significant heterogeneity. We

compute a similar firmware heterogeneity metric.

Computing metrics that capture the logical composition and structure of the data and

control planes is more intricate as it involves parsing configuration files. To conduct our

study, we extended Batfish [66] to parse the configuration languages of various device vendors

(e.g., Cisco IoS). Given parsed configurations, we determine the logical composition of the

data plane by enumerating the number of data plane constructs used (e.g., spanning tree,

VLAN, link aggregation), as well as the number of instances of each (e.g., number of VLANs

configured); Table 2.1, line D4.

To model control plane structure, we leverage prior work on configuration models [40].
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In particular, we extract routing instances from device configurations, where each instance

is a collection of routing processes of the same type (e.g., OSPF processes) on different

devices that are in the transitive closure of the “adjacent-to” relationship. A network’s

routing instances collectively implement its control plane. We enumerate the number of such

instances, as well as the average size of each instance (Table 2.1, line D5) using the same

methodology as Benson et al. [40].

Finally, we enumerate the average number of inter- and intra-device configuration ref-

erences in a network [40]. These metrics (Table 2.1, line D6) capture the configuration

complexity imposed in aggregate by all aspects of a network’s design, as well as the impact

of specific configuration practices followed by operators.

Operational practices. We infer operational practices by comparing two successive config-

uration snapshots from the same device. If at least one stanza differs, we count this as a

configuration change.

We compute basic statistics about the configuration changes observed over a certain time

window (Table 2.1, line O1). In addition, we study the modality of changes (line O2). We

infer modality (automated vs. manual) using the login metadata stored with configuration

snapshots: we mark a change as automated if the login is classified as a special account in the

organization’s user management system. Otherwise we assume the change was manual. This

conservative approach will misclassify changes made by scripts executing under a regular

user account, thereby under-estimating the extent of automated changes.

To model change type, we leverage the fact that configuration information is arranged as

stanzas, each containing a set of options and values pertaining to a particular construct—e.g.,

a specific interface, VLAN, routing instance, or ACL. A stanza is identified by a type (e.g.,

interface) and a name (e.g., TenGigabit0/1). When part (or all) of a stanza is added, removed,

or updated, we say a change of type T occurred, where T is the stanza type. We count the

number of changes of each type over a certain time window (Table 2.1, line O3).

There are a few challenges and limitations with this approach. First, type names differ
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between vendors: e.g., an ACL is defined in Cisco IoS using an ip access-list stanza,

while a firewall filter stanza is used in Juniper JunOS. We address this by manually

identifying stanza types on different vendors that serve the same purpose, and we convert

these to a vendor-agnostic type identifier. Second, even after generalizing types, a change with

the same effect may be typified differently on different vendors: e.g., an interface is assigned

to a VLAN in Cisco IoS using the switchport access vlan option within an interface

stanza, while in Juniper JunOS the interface option is used within a vlan stanza; even

though the effect of the change is the same, it will be typified as an interface change on a

Cisco device and a VLAN change on a Juniper device. Operators using MPA should be

aware of this limitation and interpret prediction results according to the mix of vendors in

their networks.

In addition to computing change metrics over changes on individual devices, we compute

change metrics over change events (Table 2.1, line O4). Change events account for the fact

that multiple devices’ configurations may need to be changed to realize a desired outcome. For

example, establishing a new layer-2 network segment (e.g., a VLAN) requires configuration

changes to all devices participating in the segment.

To identify change events, we group changes using a simple heuristic: if a configuration

change on a device occurs within δ time units of a change on another device in the same

network, then we assume the changes on both devices are part of the same change event.

Figure 2.1 shows how different values of δ influence the number of change events. The rest

of our analysis uses δ = 5 minutes, because operators indicated they complete most related

changes within such a time window.

Network Health. The health of a network can be analyzed from many perspectives,

including performance (e.g., latency or throughput), quality of experience (e.g., application

responsiveness), and failure rate (e.g., packet loss or link/device downtime). Networks are

often equipped with monitoring systems that track these metrics and raise alarms when

critical thresholds are crossed. In the networks we study, trouble tickets are automatically
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Figure 2.1: Impact of change grouping threshold (δ) on the number of change events: each box
shows the 25th, 50th, and 75th percentile number of change events per-network per-month
using various values of δ; whiskers indicate the most extreme data points within twice the
interquartile range

created when such alarms are raised. Tickets are also created when users report problems or

operators conduct planned maintenance. We exclude the latter from our analysis, because

maintenance tickets are unlikely to be triggered by performance or availability problems.

Given that ticket logs capture a wide-range of network issues, operators view tickets as a

valuable measure of network health. In particular, operators from the OSP whose networks

we study indicated that number of tickets is a useful metric. Other metrics computed from

network tickets (e.g., number of problems marked as high severity, mean time to resolution,

etc.) are less useful because of inconsistencies in ticketing practices: e.g., severity levels

are often subjective, and tickets are sometimes not marked as resolved until well after the

problem has been fixed.

2.2 Characterization of Management Practices

We now provide a detailed characterization of the network management practices used by a

large online service provider (OSP). This offers a unique and rich view into the practices used

in modern data center networks. The management practices used in data center networks

operated by other organizations may differ, but our characterization is nonetheless useful for

identifying possible contributors to data center network failures. For brevity, we quantify a
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Property Value
Months 17, Aug 2013 – Dec 2014
Networks 850+
Services O(100)
Devices O(10K)
Config snapshots O(100K), ≈450GB
Tickets O(10K), ≈80MB

Table 2.2: Size of datasets

subset of the practice metrics in Table 2.1. Overall, we find significant diversity in the design

and operational practices employed across the OSP’s networks.

Dataset. The OSP owns 850+ data center networks that are managed based on documented

“best practices.” Each network hosts one or more Web services or interconnects other networks.

Our datasets cover a 17 month period from August 2013 through December 2014. Table 2.2

shows its key aspects. For confidentiality we do not list exact numbers.

Design Practices. We start by examining the OSP’s networks in terms of their purpose,

physical composition, and control plane design.

The majority (81%) of networks host only one workload—networks are quite homogeneous

in this respect. A handful of networks do not host any workloads; they only connect networks

to each other or the external world.

The networks contain a mix of device types, including routers, switches, firewalls, applica-

tion delivery controllers (ADCs)1, and load balancers. Most networks (86%) have multiple

types of devices and 71% of networks contain at least one middlebox (firewall, ADC, or load

balancer). In half of the networks, at least 10% of the devices are middleboxes, and in one

quarter of the networks at least 25% of the devices are middleboxes.

We also find that over 81% of networks contain devices from more than one vendor, with

a maximum of six, and over 96% of networks contain more than one device model, with a

maximum of 25. Thus, some networks must use more than one device model for the same
1ADCs perform TCP and SSL offload, HTTP compression and caching, content-aware load balancing,

etc.
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Figure 2.2: Characterization of design practices

type of device. Indeed, a closer look at the hardware entropy of the networks (solid line in

Figure 2.2a) shows that only 4% of networks have just one model and one type of device;

the remaining (96% of) networks have varying degrees of heterogeneity, up to a maximum

entropy metric value of 0.82. The extent of firmware heterogeneity is similar (dashed line in

Figure 2.2a).

Next, we look at the logical composition and structure of the data and control planes.

As shown in Figure 2.2b, all networks use at least two layer-2 protocols (VLAN, spanning

tree, link aggregation, unidirectional link detection (UDLD), DHCP relay, etc.), and 89%

of networks use at least one routing protocol (BGP and/or OSPF). In 10% of networks,

eight different protocols are used. Overall there is significant diversity in the combination of

protocols used.

We find the same diversity in the number of instances of each protocol. Less than 5
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VLANs are configured in 5% of networks, but over 100 VLANs are configured in 9% of

networks (Figure 2.2c). Similarly, 86% of networks use BGP for layer-3 routing, with just one

BGP instance in 39% of networks and more than 20 instances in 8% of networks (Figure 2.2d).

In contrast, only 31% of networks use OSPF for layer-3 routing, with just one or two OSPF

instances used in these networks.

Finally, to characterize configuration complexity, Figure 2.2e shows a CDF of intra- and

inter-device referential complexity. We find that some networks’ configuration is extremely

complex (based on Benson et al.’s metrics [40]): in 20% of networks, the mean intra- and

inter-device reference counts are above 100. However, it is worth noting that: (1) the range

in complexity is rather large—it varies by 1–2 orders of magnitude across networks—and (2)

most networks have significantly lower configuration complexity metrics than the worst 10%.

Operational Practices. We now characterize the frequency, type, and modality of configu-

ration changes, as well as those of change events.

In general, the average number of configuration changes per month is correlated with

network size (Figure 2.3a; Pearson correlation coefficient of 0.64). However, several large

networks have relatively fewer changes per month: e.g., one network has over 300 devices

but less than 150 changes per month. Likewise, there are several small networks with a

disproportionately high change rate. Furthermore, not every device is changed every month—

in 77% of networks less than half of a network’s devices are changed in a given month—but

most devices are changed at least once per year—in 80% of networks more than three-quarters

of the devices are changed in a year (Figure 2.3b). Thus, changes occur frequently, and to

different sets of devices in different months.

We now analyze different types of changes. Across our entire dataset there are ≈480

different types of changes. Figure 2.3c shows CDFs of the fraction of changes in which at

least one stanza of a given type is changed. On a per-network basis, interface changes are

the most common, followed by pool (used on load balancers), ACL, user, and router.2

2There are no pool changes in 63% of networks because these networks do not contain load balancers.
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Figure 2.3: Characterization of configuration changes

Among the above most-frequently changed types, pool changes are also the most frequently

automated—more than half of all pool changes are automated in 77% of networks—followed by

ACL and interface changes. We also look at the extent of automation over all types of changes.

As shown in Figure 2.3d, more than half (quarter) of the changes each month are automated in

41% (81%) of networks. In general, we note a significant diversity in the extent of automation:

it ranges between 10% and 70%. Equally interestingly, the fraction of automated changes

is not strongly correlated with the number changes (Pearson correlation coefficient is 0.23).

Furthermore, the types of changes that are automated most frequently—sflow and QoS—are

not the most frequent types of changes.

Lastly, we look at change events, both in terms of how many there are in a network as

well as the composition of an event (in terms of number of devices changed). Figure 2.4a

shows a distribution of the number of change events. They are few in number (O(10)) in
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Figure 2.4: Characterization of configuration change events

most networks (80%); however about 5% of the networks experience tens if not hundreds

of change events in a month. We see a similar diversity in the number of change events

involving middleboxes (Figure 2.4b). Figure 2.4c shows a CDF of the average number of

devices changed per change event. Most change events we see across networks are small:

in about half of the networks, a change event affects only one or two devices (on average).

Further, in almost all networks, the average change event affects only one type of device

and one device model. Limiting changes to just a few, similar devices is intuitively a good

practice to simplify debugging and rollback.

Implications. The diversity of management practices used in the data center networks of a

single organization corroborates the takeaway from our network operator survey (Section 1.1):

operators have little agreement on which management practices are “best”. Consequently,

network operators need a framework to systematically understand practices’ impact on the

health of (i.e., the frequency of problems in) their data center networks.

In the rest of this chapter we present such a management practice analytics (MPA)

framework. MPA derives the top k management practices that impact network health by

analyzing statistical dependencies (Section 2.3) and causal relationships (Section 2.4) between

an organization’s practices and the health of its networks. MPA also builds models that

accurately predict the health of individual networks, based on a set of management practices,
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using machine learning (Section 2.5). We describe MPA’s mechanisms in more detail below,

and we use data from the OSP to illustrate how they work.

2.3 Identifying Statistical Dependencies

Common approaches for decomposing the impact of different factors include analysis of

variance (ANOVA) [21] and principal/independent component analyses (PCA/ICA) [51].

However, these techniques make key assumptions that do not always hold for network

management practices. In particular, ANOVA assumes factors are linearly related, but

management practices may not have a linear, or even monotonic, relationship with network

health: e.g., Figure 2.5 shows three different management practices—number of L2 protocols,

number of models, and fraction of events with an interface change—that have a linear,

monotonic, and non-monotonic relationship, respectively, with number of tickets. ICA

attempts to express the outcome (health metric) as a linear or non-linear combination of

independent components; applying PCA first helps identify the components to feed to ICA.

However, the components output by PCA are linear combinations of a subset of management

practices. Thus, similar to ANOVA, this approach makes the implicit assumption that linear

combinations of practice metrics can explain network health. Furthermore, the outcome of

ICA may be hard to interpret (especially if it relies on a non-linear model).

To overcome this challenge, we identify statistical dependencies using a more general

approach: mutual information (MI). When computed between a management practice metric

and network health, MI measures how much knowing the practice reduces uncertainty about

health. Crucially, MI does not make assumptions about the nature of the relationship.

Mutual information. The MI between variables X and Y (a management practice and

network health) is defined as the difference between the entropy of Y, H(Y), and the con-

ditional entropy of Y given X, H(Y|X). Entropy is defined as H(Y) = −
∑
i P(yi)logP(yi),

where P(yi) is the probability that Y = yi. Conditional entropy is defined as H(Y|X) =
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Figure 2.5: Ticket counts based on management practices: boxes show 25th and 75th
percentile, while whiskers show twice the interquartile range; red (dark) lines show the
average number of tickets, while orange (light) lines show the median

∑
i,j P(yi, xj)log

P(xj)

P(yi,xj)
, where P(yi, xj) is the probability that Y = yi and X = xj. MI is

symmetric.

We also examine statistical dependencies between management practices using conditional

mutual information (CMI). The CMI between a pair of management practices and network

health measures the expected value of the practices’ MI, given health.3 The CMI for two

variables X1 and X2 relative to variable Y is defined as H(X1|Y) −H(X1|X2, Y). Like MI, CMI

is also symmetric (with respect to X1 and X2).

Binning. Prior to computing MI or CMI, we compute the value of each management practice

and health metric on a monthly basis for each network, giving us ≈11K data points. We bin

the data for each metric using 10-equal width bins, with the 5th percentile value as the lower
3In a sense, the pair’s joint probability distribution.
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Management Practices Avg. Monthly MI
No. of devices (D) 0.388
No. of change events (O) 0.353
Intra-device complexity (D) 0.329
No. of change types (O) 0.328
No. of VLANs (D) 0.313
No. of models (D) 0.273
No. of device types (D) 0.221
Avg. devices changed per event (O) 0.215
Frac. events w/ interface change (O) 0.201
Frac. events w/ ACL change (O) 0.198

Table 2.3: Top 10 management practices related to network health according to average
monthly MI: parenthetical annotation indicates practice category (D=design, O=operational)

bound for the first bin, and the 95th percentile value as the upper bound for the last bin.

Networks whose metric value is below the 5th (above the 95th) percentile are put in the first

(last) bin.

Our motivation for this binning strategy is twofold. First, in our characterization of

management practices (Section 2.2), we observed that many management practices have a

long tail: e.g., number of VLANs (Figure 2.2c). Using the 5th and 95th percentile bounds for

the first and last bins significantly reduces the range of values covered by each bin, thereby

reducing the likelihood that the majority of networks will fall into just one or two bins.

Second, minor deviations in a management practice or health metric—e.g., one more device

or one more ticket—are unlikely to be significant. Our binning helps reduce noise from such

minor variations.

Results for the OSP. We now present statistical dependence results for the OSP. Table 2.3

shows the 10 management practices that have the strongest statistical dependence with

network health. It includes five design practices and five operational practices, thus highlighting

the potential importance of both types of practices to a healthy network.

We visually confirmed the assessment that the practices in Table 2.3 have a statistical

dependence with network health. For example, Figure 2.5 illustrates the strong statistical

dependence with network health for number of devices, number of change events, number
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Management Practice Pair CMI
Frac. events w/ pool change (O) Frac. events w/ mbox change (O) 1.107
Firmware entropy (D) Hardware entropy (D) 0.978
No. of OSPF instances (D) No. of L3 protocols (D) 0.923
No. of models (D) No. of change types (O) 0.735
No. of BGP instances (D) Inter-device complexity (D) 0.732
No. of device types (D) No. of models (D) 0.713
No. of BGP instances (D) No. of L2 protocols (D) 0.601
Avg. size of an OSPF instance (D) No. of change types (O) 0.576
Intra-device complexity (D) Inter-device complexity (D) 0.574
No. of devices (D) No. of VLANs (D) 0.569

Table 2.4: Top 10 pairs of statistically dependent management practices according to CMI:
highlighted practices are in the top 10 according to MI; parenthetical annotation indicates
practice category (D=design, O=operational)

of models, number of device types, and fraction of change events with an interface change

(ranked 1st, 2nd, 6th, 7th, and 9th, respectively, in Table 2.3).

Interestingly, one of the practices which has high impact according to our operator survey

(Figure 1.1)—fraction of events with a middlebox change—does not appear in the top 10

practices (Table 2.3); this practice is ranked 23 out of 28. This may be due to the fact

that the majority of changes to the configurations of the OSP’s middleboxes are simple

adjustments to the server pools configured on load balancers.

Table 2.4 shows the 10 management practices that have the strongest statistical dependence

with each other. We observe that six of the top 10 practices related to network health

(Table 2.3) are statistically dependent with other practices (Table 2.4); this includes all five

of the top design practices and one operational practice. In general, more design practices

(as opposed to operational practices) are statistically dependent with each other. This

trend stems from the natural connections between many design decisions: e.g., configuring

more BGP instances results in more references between devices and increases inter-device

complexity.

We also observe from Table 2.4 that several practices are dependent with multiple other

practices: e.g., number of models is dependent with number of device types and number of
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25th and 75th percentile, while whiskers show twice the interquartile range; the red (dark)
line shows the average number of models, while the orange (light) line shows the median

change types, and number of change types is also dependent with average size of an OSPF

instance. Thus, evaluating the impact of a management practice on network health requires

accounting for many other practices; we next discuss how we achieve this.

2.4 Identifying Causal Relationships

Although we can select the k practices with the highest MI as the top k management practices

associated with network health, there is no guarantee these practices actually impact health.

To establish a causal relationship between a management practice and network health, we

must eliminate the effects of confounding factors (i.e., other practices) that impact this

practice and network health [82]. For example, Figures 2.5b and 2.5d (and rows 6 and 7 in

Table 2.3) show that number of models and number of device types, respectively, are related

to network health, and Figure 2.6 (and row 6 in Table 2.4) shows that the two practices are

also related to each other.

Ideally, we would eliminate confounding factors and establish causality using a true

randomized experiment. In particular, we would ask operators to employ a specific practice

(e.g., decrease the number of device models) in a randomly selected subset of networks. We

would then compare the network health (outcome) across the selected (treated) and remaining

(untreated) networks. Unfortunately, conducting such experiments takes time (on the order
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of months), and requires operator compliance to obtain meaningful results. Moreover, true

experiments ignore already available historical network data.

To overcome these issues, we use quasi-experimental design (QED) [125]. QED uses

existing network data to affirm that an independent (or treatment) variable X has a causal

impact on a dependent (or outcome) variable Y.

Matched design. We use a specific type of QED called the matched design [136]. The basic

idea is to pair cases—each case represents a network in a specific month—that have equal (or

similar) values for all confounding variables Z1...Zn, but different values for the treatment

variable X. Keeping the confounding variables equal negates the effects of other practices on

the outcome (network health), and increases our confidence that any difference in outcomes

between the paired cases must be due to the treatment (practice under study).

Using a matched design to identify a causal relationship between a management practice

and network health entails four key steps: (1) determine the practice metric values that

represent treated and untreated; (2) match pairs of treated and untreated cases based on a

set of confounding factors, a distance measure, and a pairing method; (3) verify the quality

of the matches to ensure the effect of confounding practices is adequately accounted for; and

(4) analyze the statistical significance of differences in outcomes between the treated and

untreated cases to determine if there is enough support for a causal relationship.

A key challenge we face in using a matched design is obtaining a sufficient number of

quality matches to provide an adequate foundation for comparing the outcomes between

treated and untreated cases. As shown in Section 2.2, practices tend to vary significantly

across networks. Furthermore, many management practices are statistically dependent with

network health and each other (Section 2.3). We use nearest neighbor matching based on

propensity scores [136] to partially address this challenge, but there are also fundamental

limitations imposed by the size of our datasets.

We now describe the analysis steps in more detail, using number of change events as

an example management practice for which we want to establish a causal relationship with



32

network health. At the end of the section, we present results for the 10 management practices

that have the highest statistical dependence with network health for the OSP (Table 2.3).

1) Determining the treatment. While most other studies that use QEDs (e.g., those

in the medical and social sciences) have a clear definition of what constitutes “treatment,”

there is no obvious, definitive choice for most management practices. The majority of our

management practice metrics have an (unbounded) range of values, with no standard for

what constitutes a “normal range”: e.g., for the OSP’s networks, the average number of

change events per month ranges from 0 to hundreds (Figure 2.4a). Hence, we must decide

what values constitute treated and untreated.

One option is to define untreated as the practice metric value that represents the absence

of operational actions (e.g., no change events), or the minimum possible number of entities

(e.g., one device model or one VLAN). However, we find it is often the case that: (1) several

confounding practices will also have the value 0 or 1 (or be undefined) when the treatment

practice has the value 0 or 1—e.g., when number of change events is 0, number of change

types, average devices changed per event, and fraction of events with a change of type T

are undefined; and (2) several confounding practices will be non-zero (or >1) when the

treatment practice is non-zero. This observation makes sense, given that our CMI results

showed a strong statistical dependence between many management practices (Table 2.4).

Unfortunately, it makes it difficult to find treated cases with similar confounding practices

that can be paired with the untreated cases.

Given the absence of a “normal range,” and the strong statistical dependence between

practices, we choose to use multiple definitions of treated and untreated and conduct multiple

causal analyses. In particular, we use the same binning strategy discussed in Section 2.3 to

divide cases into 5 bins based on the value of the treatment practice. Then we select one bin

(b) to represent untreated, and a neighboring bin (b + 1) to represent treated. This gives

us four points of comparison: bin 1 (untreated) vs. bin 2 (treated), 2 vs. 3, 3 vs. 4, and 4

vs. 5; we denote these experimental setups as 1:2, 2:3, 3:4, and 4:5, respectively. More (or
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fewer) bins can be used if we have an (in)sufficient number of cases in each bin. Later in

this section, we discuss how to evaluate the quality of matches, which can help determine

whether more (fewer) bins can be used.

2) Matching pairs of cases. Matching each treated case with an untreated case is the

next step in the causal analysis process. For our causal conclusions to be valid, we must

carefully select the confounding factors, distance measure, and pairing method used in the

matching process.

During the matching process, it is important to consider all practices (except the treatment

practice) that may be related to the treatment or outcome. Excluding a potentially important

confounding practice can significantly compromise the validity of the causal conclusion,

while including practices that are actually unassociated with the outcome imposes no

harm—assuming a sufficiently large sample size and/or a suitable measure of closeness [135].

Therefore, we include all 28 of the practice metrics we infer, minus the treatment practice, as

confounding factors.

One caveat of including many confounding practices is that it becomes difficult to obtain

many exact matches—pairs of cases where both cases have the exact same values for all

confounding practices. For example, exact matching produces at most 17 pairs (out of ≈11K

cases) when number of change events is the treatment practice. The same issue exists when

matching based on Mahalanobis distance [122].

We overcome this challenge using propensity scores. A propensity score measures the

probability of a case receiving treatment (e.g., having a specific number of models) given

the observed confounding practices (e.g., number of device types) for that case [136]. By

comparing cases that have the same propensity scores—i.e., an equally likely probability of

being treated based on the observed confounding practices—we can be confident that the

actual presence or absence of treatment is not determined by the confounding practices. In

other words, a treated case and an untreated case with the same propensity score have the

same probability of having a given value for a confounding practice (e.g., number of device
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Comp.
Point

Untreated
Cases

Treated
Cases Pairs Untreated

Matched
Abs. Std. Diff.

of Means
Ratio

of Var.
1:2 8259 1745 1742 1109 0.0000 1.0091
2:3 1745 616 614 431 -0.0002 1.0314
3:4 616 296 295 200 0.0052 1.0744
4:5 296 783 673 174 -0.0002 1.0411

Table 2.5: Matching based on propensity scores

types); thus propensity score matching mimics a randomized experiment.

Given propensity scores for all treated and untreated cases, we use the most common,

and simplest, pairing method: k=1 nearest neighbor [135]. Each treated case is paired with

an untreated case that results in the smallest absolute difference in their propensity scores.

To obtain the best possible pairings, we match with replacement—i.e., allow multiple treated

cases to be paired with the same untreated case. We also follow the common practice

of discarding treated (untreated) cases whose propensity score falls outside the range of

propensity scores for untreated (treated) cases.

Table 2.5 shows the matching results for each of the four comparison points for number

of change events. There are significantly more matched pairs using propensity scores: up

to 99.8% of treated cases are matched, versus <1% with exact matching. Furthermore, the

number of untreated cases that are matched with treated cases is less than the number of

matched pairs, implying that matching with replacement is beneficial.

3) Verifying the quality of matches. When matching based on propensity scores, rather

than the raw values of confounding practices, it is important to verify that the distribution

of values for each confounding practice is similar for both the matched treated cases and

the matched untreated cases. Otherwise, the effects of confounding practices have not been

successfully mitigated, and any causal conclusions drawn from the matched pairs may not be

valid.

Figure 2.7 visually confirms the distribution equivalence for two of the confounding

practices. However, to facilitate bulk comparison, we use two common numeric measures

of balance: standardized difference of means and ratio of variances [135]. The former is
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Figure 2.7: Visual equivalence of confounding practice distributions: lines of the same color
are for the same comparison point; solid lines are for matched untreated cases and dashed
lines are for matched treated cases

computed as Z̄T−Z̄U
σT

, where Z̄T and Z̄U are the means of a confounding practice Z for the

matched treated and matched untreated cases, respectively, and σT and σU are the standard

deviations. The ratio of variances is computed as σ2
T/σ

2
U. For each confounding practice,

the absolute standardized difference of means should be less than 0.25 and the variance

ratio should be between 0.5 and 2 [135]. These equations and thresholds also apply to the

propensity scores for the matched cases.

As shown in Table 2.5, the absolute standard difference of means and the ratio of variances

of the propensity scores satisfy the quality thresholds for all comparison points. The same

also holds for all confounding factors (not shown).

Although we consider a large set of management practices in our causal analysis, it

is possible that other practices or factors also contribute to the observed outcomes. We

can easily incorporate new practices into our propensity scores as we learn about them.

Additionally, our matching based on propensity scores introduces some randomness that can

help mitigate the effects of any unaccounted for factors. However, we can never definitely

prove causality with QEDs [95]; any causal relationships identified by MPA should thus be

viewed as “highly-likely” rather than “guaranteed”.

4) Analyzing the statistical significance. The final step is to analyze the statistical

significance of the difference in outcomes between the matched treated and untreated cases.
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Comparison
Point

Fewer
Tickets

No
Effect

More
Tickets p-value

1:2 562 350 830 1.05×10−12

2:3 251 61 302 3.34×10−2

3:4 110 25 160 2.80×10−3

4:5 282 38 343 1.63×10−2

Table 2.6: Statistical significance of outcomes: causality is deemed to exist for higlighted
comparison points

For each matched pair, we compute the difference in outcome (number of tickets) between the

treated and untreated case: yt − yu. If the result is positive (negative), then the treatment

practice has led to worse (better) network health; if the result is zero, then the practice

has not impacted health. We use the outcome calculations from all pairs to produce a

binomial distribution of outcomes: more tickets (+1) or fewer tickets (-1). Table 2.6 shows

the distribution for the matched pairs at each comparison point.

If the treatment practice impacts network health, we expect the median of the distribution

to be non-zero. Thus, to establish a causal relationship, we must reject the null hypothesis H0

that the median outcome is zero. We use the sign test to compute a p-value—the probability

that H0 is consistent with the observed results. Crucially, the sign test makes few assumptions

about the nature of the distribution, and it has been shown to be well-suited for evaluating

matched design experiments [79]. We choose a moderately conservative threshold of 0.001

for rejecting H0.

Table 2.6 shows the p-value produced by the sign test for each of the comparison points

for number of change events. We observe that the p-value is less than our threshold for the

1:2 comparison point. Hence, the difference in the number of change events between bins 1

and 2 is statistically significant, and a causal impact on network health exists at these values.

In contrast, the results for the other comparison points (2:3, 3:4, and 4:5) are not statistically

significant. This is due to either the absence of a causal relationship—i.e., increasing the

number of change events beyond a certain level does not cause an increase in the number

of tickets—or an insufficient number of samples. We believe the latter applies for our data,
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because there is at least some evidence of a non-zero median: the number of cases with more

tickets is at least 20% higher than the number of cases with fewer tickets for the 2:3, 3:4,

and 4:5 comparison points.

Results for the OSP. We now conduct a causal analysis for the 10 management practices

with the highest statistical dependence with network health (Table 2.3). Due to skew in our

data, we can only draw meaningful conclusions for low values of our practice metrics (bins 1

and 2).

Table 2.7 shows the p-value for the comparison between the first and second bin for each

practice. We observe that 8 of the 10 practices have a causal relationship according to our

p-value threshold. In fact, the p-values for these practices are well below our chosen threshold

(0.001). The strongest evidence of a causal relationship exists for number of change types,

number of change events, and number of device types.

Several of the practices with a causal relationship, including number of devices and average

devices changed per event, are practices for which operators who responded to our survey had

mixed opinions regarding their impact (Figure 1.1). Our analysis also matches the prevailing

opinion that number of change events has a high impact on health, and, to some extent,

discredits the belief that the fraction of events with ACL changes has low impact.

For the remaining two metrics, intra-device complexity and fraction of events with an

interface change, there is not enough evidence to support a causal relationship. The high

statistical dependence but lack of a causal relationship is likely due to these practices being

affected by other practices which do have a causal relationship with network health. For

example, number of VLANs has a causal relationship with network health and may influence

intra-device complexity. Hence, a change in number of VLANs may change both network

health and intra-device complexity in a way that makes intra-device complexity statistically

similar to health.

Table 2.8 shows the p-value for the comparison between the upper bins for the same

10 practices. We observe that over one-third of the matchings have poor quality (i.e.,
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Treatment Practice p-value for 1:2
No. of devices 1.92×10−8

No. of change events 1.05×10−12

Intra-device complexity 1.53×10−2

No. of change types 5.75×10−12

No. of VLANs 6.46×10−6

No. of models 1.31×10−7

No. of device types 2.99×10−10

Avg. devices changed per event 3.56×10−8

Frac. events w/ interface change 5.27×10−3

Frac. events w/ ACL change 9.10×10−9

Table 2.7: Causal analysis results for the first and second bin for the top 10 statistically
dependent management practices: highlighted p-values satisfy our significance threshold

Treatment Comparison Point
Practice 2:3 3:4 4:5
No. of devices Imbal. Imbal. Imbal.
No. of change events 3.34×10−2 2.80×10−3 1.63×10−2

Intra-device complexity Imbal. 1.71×10−1 1.47×10−1

No. of change types 9.02×10−1 1.42×10−5 Imbal.
No. of VLANs Imbal. 1.94×10−3 Imbal.
No. of models Imbal. Imbal. Imbal.
No. of device types Imbal. 6.63×10−1 Imbal.
Avg. devices changed per event 4.53×10−3 2.25×10−1 Imbal.
Frac. events w/ interface change 4.51×10−2 4.58×10−1 2.89×10−12

Frac. events w/ ACL change 4.88×10−2 2.78×10−1 6.48×10−2

Table 2.8: Causal analysis results for upper bins for the top 10 statistically dependent
management practices: highlighted p-values satisfy our significance threshold

strong imbalance), and most of the others have large p-values. This primarily stems from

management practice metrics following a heavy-tailed distribution. For example, when the

treatment practice is number of devices, 81% of cases fall into the first bin and 8% fall into

the second bin; this means there are few cases from which to select matched pairs for the

2:3, 3:4, and 4:5 comparison points. The only way to address this issue is to obtain (more

diverse) data from more networks.
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2.5 Predicting Network Health

We now move on to the second goal of MPA: building models that take a set of management

practices as input and predict the expected network health. Such models are useful for

network operators to explore how adjustments in management practices will likely impact

network health: e.g., will combining configuration changes into fewer, larger changes improve

network health?

We find that basic learning algorithms (e.g., C4.5 [117]) produce mediocre models because

of the skewed nature of management practices and health outcomes. In particular, they

over-fit for the majority healthy network case. Thus, we develop schemes to learn more

robust models despite this limitation. We show that we can predict network health at coarse

granularity (i.e., healthy vs. unhealthy) with 91% accuracy; finer-grained predictions (i.e., a

scale of 1 to 5) are less accurate due to a lack of sufficient samples.

2.5.1 Building an Organization’s Model

We start with the following question: given all data from an organization, what is the best

model we can construct?

An intuitive place to start is support vector machines (SVMs). SVMs construct a set

of hyperplanes in high-dimensional space, similar to using logistic regression to construct

propensity score formulas during causal analysis. However, we found the SVMs performed

worse than a simple majority classifier. This is due to unhealthy cases being concentrated in

a small part of the management practice space.

To better learn these unhealthy cases, we turn to decision tree classifiers (the C4.5

algorithm [117]). Decision trees are better equipped to capture the limited set of unhealthy

cases, because they can model arbitrary boundaries between cases. Furthermore, they are

intuitive for operators to understand.

Methodology. Prior to learning, we bin data as described in Section 2.3. However, we
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use only 5 bins for each management practice (instead of 10), because the amount of data

we have is insufficient to accurately learn fine-grained models. For network health, we use

either 2 bins or 5 bins; two bins (classes) enables us to differentiate coarsely between healthy

(61 tickets) and unhealthy networks, while five bins captures more fine-grained classes of

health—excellent, good, moderate, poor, and very poor (62, 3–5, 6–8, 9–11, and >12 tickets,

respectively). As is standard practice, we prune a decision tree to avoid over-fitting: each

branch where the number of data points reaching this branch is below a threshold α is

replaced with a leaf whose label is the majority class among the data points reaching that

leaf. We set α=1% of all data.

Model Validation. We measure the accuracy, precision, and recall of the decision trees

using 5-fold cross validation. Accuracy is the mean fraction of test examples whose class is

predicted correctly. For a given class C, precision measures what fraction of the data points

that were predicted as class C actually belong to class C, while recall measures what fraction

of the data points that belong to class C are correctly predicted as class C.

We find that a 2-class model performs very well. The accuracy of the pruned decision

tree is 91.6%. In comparison, a majority class predictor has a significantly worse accuracy:

64.8%. Furthermore, the decision tree has very high precision and recall for the healthy class

(0.92 and 0.98, respectively), and moderate precision and recall for the unhealthy class (0.62

and 0.31, respectively). A majority class predictor has only moderate precision (0.64) for the

healthy class and no precision or recall for the unhealthy class.

The accuracy for a 5-class model is 81.1%, but the precision and recall for the intermediate

classes (good, moderate, and poor) are very low (DT bars in Figure 2.8). The root cause

here is skew in the data: as shown in Figure 2.9b, a majority of the samples represent the

“excellent health” case (73%), with far fewer samples in other health classes (e.g., the poor

class has just 2.3% of the samples). Our 5-class decision tree ends up overfitting for the

majority class.

Addressing Skew. Because networks are generally healthy, such skew in data is a funda-
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Figure 2.8: Accuracy of 5-class models (DT=standard decision tree learning algorithm,
AB=AdaBoost, OS=oversampling)
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Figure 2.9: Health class distribution

mental challenge that predictive models in MPA need to address, especially when attempting

to predict fine-grained health classes. To address skew and improve the accuracy of our

models for minority classes, we borrow two techniques from the machine learning community:

boosting (specifically, AdaBoost [67]) and oversampling.4

AdaBoost helps improve the accuracy of “weak” learners. Over many iterations (we use

15) AdaBoost increases (decreases) the weight of examples that were classified incorrectly

(correctly) by the learner; the final learner (i.e., decision tree) is built from the last iteration’s

weighted examples. Oversampling directly addresses skew as it repeats the minority class
4We also experimented with random forests [46, 90]; neither balanced [46] nor weighted random forests [90]

improve the accuracy for the minority classes beyond the improvements we are already able to achieve with
boosting and oversampling.
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examples during training. When building a 2-class model we replicate samples from the

unhealthy class twice, and when building a 5-class model we replicate samples from the poor

class twice and the moderate and good classes thrice.

The results from applying these enhancements are shown in Figure 2.8. We observe

that AdaBoost results in minor improvement for all classes. In contrast, using oversampling

significantly improves the precision and recall for the three intermediate health classes, and

causes a slight drop in the recall for the two extreme classes (excellent and very poor). Using

oversampling and AdaBoost in combination offers the best overall performance across all

classes.

The final 5-class model is substantially better than using a traditional decision tree. How-

ever, it is still sub-optimal due to the significant skew in the underlying dataset. Separating

apart a pair of nearby classes whose class boundaries are very close—e.g., excellent and

good—requires many more real data points from either class; oversampling can only help so

much. Thus, lack of data may pose a key barrier to MPA’s ability to model network health at

fine granularity. Nonetheless, we have shown that good models can be constructed for coarse

grained prediction.

2.5.2 Using an Organization’s Model

Operators can use an organization’s model to determine which combinations of management

practices lead to an (un)healthy network, and to evaluate how healthy a network will be in

the future when a specific set of management practices are applied.

Tree Structure. Figure 2.10a shows a portion of the best 5-class tree. Since decision

trees are built by recursively selecting the node with the highest mutual information, the

management practice with the strongest statistical dependence (identified in Section 2.3)—

number of devices—is the root of the tree. In the second level, however, two of the three

practices are not present in our list of the 10 most statistically dependent practices (Table 2.3).

This shows that the importance of some management practices depends on the nature of
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Figure 2.10: Decision trees (only a portion is shown)

other practices: e.g., when the number of devices is medium or low, the number of device types

(i.e., the presence of middleboxes) is a stronger determinant of health than the number of

change events. Thus, examining the paths from the decision tree’s root to its leaves provides

valuable insights into which combinations of management practices lead to an (un)healthy

network. The same observations apply to the 2-class tree (Figure 2.10b).

Predicting Future Health. We now show that an organization’s model can accurately

predict the future health of an organization’s networks. In particular, we build decision trees

using data points from M months (t −M to t − 1). Then, we use management practice

metrics from month t to predict the health of each network in month t. The accuracy for

month t is the fraction of networks whose health was correctly predicted.

Table 2.9 shows the average accuracy for M=1, 3, 6, and 9 for values of t between

February and October 2014. We observe that a 2-class model has consistently high prediction
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M (months) 5 classes 2 classes
1 0.734 0.881
3 0.756 0.893
6 0.779 0.901
9 0.779 0.903

Table 2.9: Accuracy of future health predictions

accuracy of 89% irrespective of the amount of prior data used to train the model. This trend

primarily stems from having less severe skew between the majority and minority classes when

using two classes (Figure 2.9a).

The prediction accuracy of a 5-class model reaches 78% for M = 9. Also, accuracy

improves with a longer history of training data: using 9 months, rather than 1 month, of

training data results in a 5% increase in accuracy. However, as the amount of training data

increases (i.e., increasing M) the relative improvement in accuracy diminishes. Thus, a

reasonably accurate prediction of network health can be made with less than a year’s worth

of data.

2.6 Limitations

Generality. While the observations we make for the OSP’s networks provide a valuable

perspective on the relationship between management practices and network health, the

statistical dependencies and causal relationships we uncover may not apply to all organizations.

Differences in network types (e.g., data center vs. wide area networks), workloads, and

other organization-specific factors may affect these relationships. Nonetheless, our techniques

are likely generally applicable, and any organization can run our tool [18] to discover these

relationships for its networks.

Intent of Management Practices. The metrics we infer (Section 2.1.2) quantify manage-

ment practices in terms of their direct influence on networks’ physical infrastructure and data

and control planes: e.g., how heterogeneous is network hardware, and which configuration

stanzas are changed. However, we could also quantify management actions in terms of
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their intent, or the goal an operator is trying to achieve: e.g., an operator may want to

reduce firmware licensing costs, so they design a network to use RIP rather than OSPF [40].

By analyzing the relationships between intent and network health, we can gain a richer

understanding of what practices are the most problematic. Unfortunately, intent is much

more difficult to infer from network data sources (Section 2.1.1), and doing so is part of our

future work (Section 5.2).

2.7 Related Work

Analyzing network failures. Prior work has examined network failures in great detail. For

example, Turner et al. use device logs, network probes, and incident reports to understand

the causes, frequency, and impact of failures in enterprise campus networks [139]. Turner et

al. also examine how to combine various data sources to obtain a better view of failures and

their root causes in regional backbone networks [140, 141].

In the context of data centers, Gill et al. [75] study the frequency, causes, and impact of

link and device failures in data center networks; Benson et al. [42] and Navendu et al. [114]

study such failures specifically in cloud data centers. Navendu et al. [113] also provide a

detailed characterization of middlebox failures in data centers. The latter two studies use

output from NetSieve, which uses natural language processing to analyze the free-form text

of network trouble tickets and generate a synopsis of the problem, troubleshooting steps, and

resolution actions [115].

While these studies provide valuable insights into network failures, they do not link failures

back to the high-level design and operational practices employed by network operators, nor do

not provide solutions to mitigate failures. However, some of the data sources and techniques

considered in these studies could be useful for deriving better network health metrics that

could then improve the usefulness of MPA.

General best practices. Establishing, following, and refining management practices is
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an important part of information technology (IT) service management. ITIL [14] provides

guidance on: service design, which focuses on health-related concerns such as availability

and service levels; service transition, which focuses on change, configuration, and deployment

management; and continual service improvement. Some of the general metrics used in ITIL

to asses the health of an IT organization (e.g., number of changes) are also used in MPA

(Section 2.1.2), but MPA considers many networking-specific metrics as well. The major steps

in MPA—defining metrics, characterizing practices, and uncovering relationships between

practices and health—are similar to the steps employed in security management [81]. However,

MPA’s analyses are focused more on causality and prediction (Sections 2.4 and 2.5).

Configuration management practices. Several studies have examined network man-

agement practices from the perspective of device configurations. Kim et al. study several

configuration-related design and operational issues in two university networks: e.g., how

network-wide configuration size grows over time, what causes this growth, how configurations

of different device types (e.g., router, firewall, etc.) change and why, and the qualitative

differences among the campuses in these aspects [92]. Others have looked at more narrow

aspects of configuration practices: e.g., Benson et al. examine configuration complexity in

seven enterprise networks [40] and study the design and change patterns of various network-

based services of a large ISP [41]; Garimella et al. and Krothapalli et al. study VLAN usage

in a single university network [69, 97]. In contrast to these prior works, MPA considers a

much more comprehensive set of design and operational practices. Also, by virtue of studying

hundreds of data center networks operated by a large online service provider, we are able

to provide a unique view into the variation in data center network management practices.

Finally, none of these prior studies tie their the observations to network failures.

Analysis techniques. Our use of quasi-experimental designs (QEDs) in MPA (Section 2.4)

is inspired by recent network measurement studies focused on video streaming quality [95]

and video ad placement [96]. While these works use exact matching in their QEDs, we use

nearest neighbor matching of propensity scores, because exact matching cannot accommodate
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the large number of confounding factors in the management plane.

We use standard machine learning algorithms, e.g., C4.5 [117] and AdaBoost [67], for

producing a predictive model of network problems given a specific set of management practices

(Section 2.5). Machine learning has previously been used in networking for task such as

predicting the quality of experience for streaming video [38, 133] and classifying traffic (as

malicious) [101, 132]. However, MPA is one of the first contributions to the networking

community that leverages machine learning for improving network management.

Relation to other subfields of computer science. MPA as a whole is inspired by

research into software engineering practices, also called “empirical software engineering”,

which has helped improve the quality of software and reduced the number of bugs [43]. We

expect similar positive impact from MPA.

2.8 Summary

This chapter introduced the first framework for systematically analyzing how an organization’s

network management practices impact the likelihood of network failures. By studying the

management practices employed in over 850 data center networks operated by a large online

service provider (OSP), we showed that such a framework is both: (1) necessary—the diversity

we found in the management practices used in the OSP’s networks, in combination with

our operator survey (Section 1.1), illustrates that the networking community has a limited

understanding of which management practices are “best”; and (2) feasible—through the use of

carefully selected analysis and learning techniques, including mutual information, propensity

score matching, boosting, and oversampling, we are able to overcome the challenges introduced

by the sometimes non-linear, overlapping, and skewed relationships between management

practices and network health.

More importantly, the application of MPA to the OSP’s data center networks revealed

several management practices that strongly influence the number of problems these networks

experience. In particular, there is strong statistical and causal evidence that the number of
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devices, the number and type of configuration changes, and the number of device types (i.e.,

the presence of middleboxes) impacts network health. The first and last of these practices

are difficult to change: the number of devices is largely dictated by the number of end hosts

the network must support, and various types of middleboxes are essential for meeting the

security and efficiency needs of applications. The number and diversity of configuration

changes may be easier to reduce, but some configuration changes are inevitable, so the risk of

misconfiguration-induced failures is still non-negligible. Thus, it is important for data center

network operators to have well-designed network verification and middlebox management

frameworks at their disposal.

Unfortunately, many tools for verifying network functionality (e.g., reachability) [66, 87,

88, 91, 105] and managing the performance and availability of middleboxes [70, 111, 116]

are inefficient, because they operate at a low-level of abstraction. Therefore, we design and

enable new abstractions that help network operators ensure routers and middleboxes—the

two crucial components of data center networks—function correctly and perform well. We

motivate and discuss these abstractions in detail in the next two chapters.
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3 control plane checking using arc

In the previous chapter, we showed that the frequency of configuration changes in data center

networks has a strong impact on the number of problems these networks experience. This

corroborates the widely held belief that control plane configurations are often buggy [64, 150].

In some cases, the problems arising from configuration bugs may occur immediately after a

new control plane configuration is applied (and routing has re-converged). In other cases,

bugs may only become apparent when links or devices fail: e.g., in 2012, failure of a router

in a Microsoft Azure data center triggered previously unknown configuration errors on other

devices, degrading service in the West Europe region for several hours [138]. Thus, it is

desirable to detect control plane configuration bugs before they impact network security and

availability, lest end hosts and applications be susceptible to attacks or experience failures

due to an inability to communicate.

Unfortunately, many network verification tools [87, 88, 91, 105] analyze a network’s

current data plane. This limits the scope of their analyses to the current live network and

prevents them from being used for proactive analysis. To overcome this limitation, more

recent tools [66] simulate the control plane and generate the network’s expected data plane

under specific failure scenarios, e.g, a single link failing. However, these tools operate at a low

level of abstraction, modeling individual protocol message exchanges to generate the data

plane. Furthermore, these tools must generate the complete data plane for every possible

failure scenario of interest. Consequently, they tend to be slow and impractical for proactively

verifying important security and availability invariants under arbitrary failures. Ideally, a

network operator should be able to verify every configuration change—up to thousands of

changes per month (Section 2.2)—before they are applied to the network. This requires

a method of verification that takes at most a few minutes to check important functional

invariants, such as those in Table 3.1, for an entire data center network.

In this chapter, we present an abstract representation for control planes (ARC) that
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Invariant Example
I1: Always blocked External hosts can never communicate with subnet S
I2: Always reachable with
< k infrastructure faults

Up to 5 links can fail without breaking connectivity between
subnets S1 and S2

I3: Always isolated Traffic between subnets S1 & S2 and S3 & S4 never traverses
the same link simultaneously

I4: Always traverse a middlebox Traffic between external hosts and internal hosts must
always traverse a firewall

I5: Equivalent(C1,C2) Traffic between hosts must always traverse the same paths
if control plane C2 were to replace C1

Table 3.1: Invariants of common interest

models a data center network’s forwarding behavior at a higher level than today’s network

verifiers, thus enabling such efficient analysis. This is made possible by two key factors: (1)

proactive control plane analysis tasks often require computing properties of paths, not the

paths themselves—e.g., invariants I1–I4 in Table 3.1 focus on the existence (or absence)

of paths; and (2) data center networks tend to use only a handful of routing protocols

(Section 2.2) which interact in very specific ways (Section 3.6).

We begin this chapter with an overview of the key requirements (Section 3.1) and challenges

(Section 3.2) in designing ARC. We then present algorithms for constructing a network’s

ARC (Sections 3.3 and 3.4); in Appendix A, we formally prove the resulting ARC satisfies

our requirements. We then discuss how ARC can be used to efficiently check important

invariants (Section 3.5), and we conclude (Section 3.6) by evaluating ARC’s efficiency using

control plane configuration snapshots from a subset of the OSP’s networks we analyzed in

Chapter 2.

3.1 Important Attributes of ARC

A network’s ARC consists of a collection of weighted digraphs, with one digraph for each

“traffic class” (i.e., source-destination subnet pair). As an example, Figure 3.1b shows the

ARC for the simple control plane in Figure 3.1a; the ARC has six graphs: one for each

possible combination of source and destination subnets. Each digraph models the behavior
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(b) Abstract representation for the control plane (ARC): it contains one digraph for every pair of
source and destination subnets; vertices correspond to routing processes (two per process for reasons
described in Section 3.3); edges represent the possible flow of data traffic enabled by the exchange
of routing information between the connected processes

Figure 3.1: Example network with a single OSPF instance and its ARC

of the routing instances/protocols in the control plane, and the interactions among them,

with respect to the corresponding traffic class.

In order to check important invariants, such as those listed in Table 3.1, using ARC, the

constituent digraphs must posses two key attributes: comprehensiveness and precision.

Graph comprehensiveness. Each digraph in an ARC is constructed such that it contains

every path between the source and destination endpoints that is used in the real network,

and does not contain any paths that are infeasible in the real network, under arbitrary

infrastructure faults. We say such a digraph is comprehensive, because it encodes all possible,
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and no impossible, forwarding behaviors.

With a comprehensive ARC, verifying the invariants I1–I4 in Table 3.1 for arbitrary link

failures boils down to checking simple graph-level attributes. For example, assume the graphs

in Figure 3.1b are comprehensive. Suppose we want to verify that “subnet T can never send

traffic to subnets S or U under any link failure scenario” in the network shown in Figure 3.1a.

This can be done by checking if T and S (or T and U) are in separate connected components

of the graphs for the corresponding traffic classes (the upper-center and lower-center graphs

in Figure 3.1b). Because T and U are in the same connected component in the upper-center

graph, there is some link failure scenario in which the invariant is violated and T can send

traffic to U (e.g., when the B−D link fails).

Graph precision. To aid operators in debugging violations, and allow for fast equivalence

testing, the edge weights in each digraph are assigned such that, after removing edges

corresponding to arbitrary failed links, the min-cost path in the digraph between the source

and destination vertices is the exact path taken in the real network. We say such a graph is

precise, because it encodes the network’s actual forwarding behavior under arbitrary link

failures.

For example, when there are no link failures in the network in Figure 3.1a, traffic from S

to U takes the path S→ B→ C→ U, which is the min-cost path in the lower-right graph in

Figure 3.1b. When the B−C link fails, the actual and min-cost path is S→ B→ D→ C→ U.

While in this example edge weights are the same as OSPF cost metrics, in a real ARC the

weights are a function of the relative rank of specific routing protocols, AS paths, and network

links.

When the digraph is precise, we can produce all min-cost paths1 from T to U as counter-

examples to the aforementioned invariant. The operator can use this to add the missing

ACL to C and prevent T and U from ever communicating. Additionally, we can check the

equivalence of two control planes by directly comparing the graphs contained in their ARC.
1By producing all min-cost paths we can capture the effects of multipath routing.
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If each graph in each control plane’s ARC has the same vertices and edges, and the edge

weights are proportional, then the control planes are equivalent.

3.2 Challenges in Generating a Network’s ARC

The main challenge in constructing a network’s ARC is determining the appropriate vertices,

edges, and weights to use for the constituent graphs to ensure they are comprehensive and

precise.

Modeling the collective behavior of multiple routing instances in a series of weighted

digraphs in the ARC is enabled by the fact that most routing protocols used in today’s data

centers employ a cost-based path selection algorithm. For example, OSPF uses Dijkstra’s

algorithm to compute min-cost paths from a source to all destinations; RIP computes shortest

paths using the Bellman-Ford algorithm. BGP associates cost labels with paths based

on numeric metrics: e.g., operator-defined local preference, path length, and multi-exit

discriminator (MED) [4, 85]. These have similar properties to link costs used in IGPs, except

BGP costs are per-path rather than per-link.

While these similarities allow us to use weighted digraphs to model routing behavior,

differences between protocols introduce at least two challenges:

1. In the actual control plane, interior and exterior gateway protocols (IGPs and EGPs,

respectively) compute routes at different granularities. An IGP treats each router as a

node, while an EGP views each AS as a node.

2. Each routing protocol uses a different currency for expressing link and path costs/pref-

erences: e.g., a link with an OSPF cost of 1 may be less desirable than an AS path

whose local preference is 1, or vice versa. Thus, we cannot directly add or compare

costs between protocols.

There are other subtle aspects of network control planes that also impact our modeling:

• Traffic-class-specific policies. Only certain classes of traffic are blocked by a data/control
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plane ACL.

• Redistribution of routes between routing instances. A routing process may advertise

routes computed by another routing instance, allowing traffic to traverse a path

composed of segments selected by different protocols.

• Selection of routes based on AD. When multiple routing processes on the same device

identify a route to a destination, only the route from the process with the lowest

administrative distance (AD) is installed in the device’s global routing information base

(RIB) [99].

In the next two sections, we describe how we structure and generate the ARC’s digraphs

to accommodate the above issues. We focus on networks that use OSPF, RIP, eBGP (with

internal ASes), static routes, AD-based route selection, route redistribution, data plane ACLs,

and/or route filters. These are the constructs we find throughout the hundreds of data center

networks we study in Section 3.6, allowing us to produce comprehensive ARCs for all of

these networks and precise ARCs for 97% of the networks. A subset of these same features

are used in Facebook’s data centers [37] and our university data center. We do not handle

OSPF areas, BGP local preferences, circular route redistribution, or other routing protocols.

However, we believe our algorithms (Sections 3.3 and 3.4) could be extended to support

OSPF areas and other routing protocols that employ a min-cost path selection algorithm

(e.g., EIGRP).

3.3 Extended Topology Graphs

A network’s physical topology may seem like a natural starting point for the ARC’s graphs.

By having a vertex for each router and an edge for each physical link, we can assign edge

weights based on the per-interface cost metrics defined for IGPs (e.g., OSPF and RIP) and

the AS preferences defined for BGP. However, this is too coarse to express route selection

and redistribution policies between routing processes running on the same device.
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To accommodate these features, we introduce an abstraction called an extended topology

graph (ETG). Figure 3.2b shows the ETG for the example control plane depicted in Figure 3.2a.

Vertices in the ETG correspond to individual routing processes.2 Directed edges represent

inter- and intra-device communication paths between routing processes. These include

hardware paths—a single physical link or multiple physical links that form a layer-2 network—

and software paths—inter-process communication channels used to exchange information

between processes on the same device.

Some aspects of a network’s routing control plane only apply to specific traffic classes:

e.g., data plane ACLs, route filters, and static routes. To accommodate these features, an

ARC includes a customized ETG for each traffic class. As mentioned earlier, a traffic class

represents the set of traffic flowing from one endpoint group—a set of related hosts, subnets,

etc.—to another. We use the network prefixes in device configurations, including prefixes

assigned to interfaces, advertised by routing processes, and referenced in ACLs, as the basis

for determining a network’s endpoint groups. Because some prefixes may overlap, we use

standard firewall rule optimization algorithms [68] to compute a set of non-overlapping

prefixes. We generate a list of traffic classes by enumerating all possible pairings of prefixes.

Modeling forwarding behavior at the level of routing processes results in an ARC that is not

protocol-independent. This model is nevertheless useful to answer control plane verification

questions. In Section 3.5.2, we show how to transform an ETG from a process-based to

an interface-based model, resulting in a protocol-independent ARC that can be useful for

equivalence testing.

3.3.1 Constructing ETGs

Vertices. The ETG contains two vertices (in and out) for each routing process. For

example, the processes on routers B, Y, and Z for routing instance OSPF3 in Figure 3.2a are

represented by vertices B.3I, B.3O, Y.3I, Y.3O, Z.3I, and Z.3O in Figure 3.2b. We use two
2Static routes are also viewed as a routing process.
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vertices per process in order to accommodate route selection and redistribution (described in

detail below). We identify a network’s routing processes from the router stanzas in device

configurations [106].

We also add special source and destination vertices (Src and Dst, respectively) to the

ETG to represent the source and destination endpoints associated with the traffic class.

Inter-device edges. The out vertex for a routing process on one device is connected to the

in vertex for a process on another device if: (i) the two devices are connected by a (sequence

of) physical link(s),3 and (ii) the routing processes participate in the same routing instance.

Such an inter-device edge thus represents two things. First, it represents the direct exchange

of routing information (e.g., link-state updates or AS-level path advertisements) within a

routing instance. Second, it represents a possible physical path over which data traffic may

be forwarded due to the RIB entries resulting from the aforementioned exchange of routing

information.

For example, in the network shown in Figure 3.2a, the BGP1 routing process on router E

may compute a route to the subnet S via router F as a result of routing information sent by

the BGP1 process on router F. The flow of routing information from F to E and the resulting

flow of data traffic from E to F is represented by the edge from E.1O to F.1I in Figure 3.2b.

There is a similar edge from F.1O to E.1I, because routing information also flows from E to F

and may result in the flow of data traffic from F to E. Note that inter-device edges always go

from an out vertex to an in vertex and point in the direction data traffic flows, which is the

inverse of the direction routing information flows.

Unlike routes computed by IGP and BGP processes, static routes are not based on

advertisements from a specific neighboring process. Thus, we connect a static route’s out

vertex to the in vertices for all processes on the next hop device—i.e., the device with an

interface whose IP address matches the next hop IP specified in the static route.

Intra-device edges. The ETG also contains edges between the vertices associated with
3We assume two devices are physically connected if they each have an interface that participates in the

same subnet [106].
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routing processes running on the same device. A routing process’s in vertex is connected

to: (i) the process’s out vertex, and (ii) the out vertex of any other process on the device

that redistributes routes into the process. Such intra-device edges represent the exchange

of routing information and the flow of data traffic resulting from route computation within

a process and route redistribution between processes, respectively. For example, the route

computation within the routing process for OSPF3 on B is represented by the edge from

B.3I to B.3O in Figure 3.2b, and the redistribution of routes from routing instance OSPF2 to

OSPF3 is represented by the edge from B.3I to B.2O. As above, intra-device edges point in

the opposite direction that routing information flows.

Endpoint edges. Edges are added from the Src vertex to a routing process’s out vertex

if the device on which the process runs can be directly reached by the source endpoint(s)

using layer-2 forwarding: e.g., Src→ A.2O in Figure 3.2b. Similarly, edges are added from a

routing process’s in vertex to the Dst vertex if the device on which the process runs can

directly reach the destination endpoint(s): e.g., F.1I → Dst. For traffic classes whose source

endpoint is external, we add an edge from Src to the out vertices of all processes that send

external route advertisements; we add similar edges for external destinations.

Factoring in ACLs and route filters. Data plane ACLs prevent particular classes of

traffic from entering or leaving a router. Similarly, route filters prevent a routing process

from advertising particular prefixes to a process on another device, or a process on the same

device through route redistribution.

To account for these filtering mechanisms, we prune some edges from the ETG. In

particular, we prune an inter-device edge if: (i) there is an outgoing or incoming data plane

ACL configured on the interfaces associated with the physical link(s) the edge represents, and

(ii) the ACL blocks the traffic class associated with the ETG. We also prune an inter-device

edge if a route filter that blocks the traffic class’s destination prefix has been applied to the

process whose out vertex is incident with the edge. Similarly, we prune an intra-device edge if

a route filter that blocks the traffic class’s destination prefix is applied to routes redistributed
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by the process whose out vertex is incident with the edge.

3.4 Computing ETG Edge Weights

While comprehensive ETGs are sufficient for verifying many important invariants, such as I1–I4

in Table 3.1, precise ETGs are required for generating counterexamples or testing equivalence

(I5). The key challenge in constructing precise ETGs is determining the appropriate edge

weights such that the min-cost path through the ETG matches the actual path taken in the

network under arbitrary infrastructure faults. Next, we describe how to assign such weights

to different types of edges. In Appendix A, we prove the resulting ETGs are precise.

3.4.1 Endpoint edges

When assigning weights to endpoint edges, we must consider the route selection policies of

the devices to which the source and destination endpoints are connected.

Source edges. When the source is connected to a device with one routing process, then the

best route (if any) computed by that process is always used. Thus, the edge from Src to the

process’s out vertex is assigned a weight of 0.

If the device has multiple routing processes, then a route computed by a process with a

lower AD is preferred over a route computed by a process with a higher AD. We model this

by assigning edge weights proportional to a process’s AD. The weight of an edge from Src

to r .iI is set to

ADi ∗max
i ′∈Ir

(∑
e∈Ei ′

we

)
(3.1)

where Ir is the set of routing instances in which router r participates, Ei ′ is the set of edges

originating from the in and out vertices for the routing processes in instance i ′, and we is

the weight assigned to edge e. This ensures the cost of a path originating at a process with

a higher AD is always more expensive than the longest possible path through a routing

instance whose process has a lower AD.
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Destination edges. When the destination is directly connected to a device, the device

always sends traffic directly to the destination; no other route is ever preferred. Thus, edges

to Dst are assigned a weight of 0.

3.4.2 Inter-device edges for IGPs

For inter-device edges connecting RIP or single-area OSPF processes, we directly assign the

cost metric specified in the device configurations. If no cost is explicitly defined, we assign

the DEFAULT-RIP-COST or DEFAULT-OSPF-COST defined by the device vendor. For

example, edges A.2O → B.2I and B.2O → A.2I in Figure 3.2b are assigned the OSPF cost

configured on the A− B link in Figure 3.2a.

3.4.3 Inter-device edges for eBGP

eBGP processes inside the network. We model the primary path selection criterion

used by eBGP for computing paths: AS path length. In the absence of iBGP (which we show

in Section 3.6 is not used in the networks we study), each autonomous system (AS) can only

have a single eBGP speaker (i.e., process) that is directly connected to the eBGP speakers of

neighboring ASes.4 Thus, the length of an AS path is simply the number of eBGP processes

traversed. We capture this by assigning a weight of 1 to inter-device edges connecting eBGP

processes. For example, edges F.1O → E.1I and E.1O → D.1I in Figure 3.2b are assigned

weight 1.

eBGP processes outside the network. We cannot precisely model paths that depend

on advertisements from external eBGP processes, because we do not know what length paths

will be advertised. As discussed in Section 3.3.1, if the source (destination) is external, we

simply add an edge from Src to the out vertex (to Dst from the in vertex) of every eBGP
4An AS without iBGP can have multiple eBGP speakers, but each eBGP speaker can only compute

paths through ASes with which it has a direct connection; different eBGP processes in the same AS cannot
directly exchange routes.
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process inside the network that peers with an eBGP process outside the network. Edge

weights are assigned to these endpoint edges as described above.

3.4.4 Intra-device edges for route redistribution

As discussed in Section 3.3.1, route redistribution is modeled via intra-device edges connecting

the in vertex of one routing process to the out vertex of another process. When assigning

weights to these edges, we must consider: (1) the fixed costs assigned to redistributed

routes—e.g., routes redistributed into an OSPF routing instance are assigned a static cost

(specified in the device configuration) regardless of the path selected by the redistributing

instance—and (2) the relative priority of the redistributing process compared to other routing

processes running on the same device. Below, we use the terms redistributor and redistributee

to refer to the routing process from which and to which routes are redistributed, respectively;

we also assume the processes are associated with routing instances i ′ and i, respectively.

Fixed costs. Modeling the fixed costs is challenging, because paths through the ETG

include the weights associated with edges from multiple routing instances, whereas in the

actual network each routing instance only considers the costs associated with its own links

and redistributed routes. We address this by scaling down the weights of edges in the

redistributor’s routing instance. We reduce the weights such that even the highest cost path

through the redistributor’s instance (i ′) is less than the minimum difference between any two

paths in the redistributee’s routing instance (i). For example, in Figure 3.2b the minimum

difference in cost between any two paths through routing instance BGP1 is 1, so we scale the

weights of edges in instance OSPF3 such that the longest path through OSPF3 (Z→ Y → B)

has a cost less than 1. As a result, the cost of the path through the redistributor’s routing

instance does not impact the selection of the path through the redistributee’s instance, which

mimics the behavior of the actual routing control plane.

We can recursively scale edge weights to accommodate sequences of routing instances

that redistribute routes. In fact, our approach works with any network where the route
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redistribution policy is acyclic. The scaling factor fi for the weights of edges in routing

instance i is computed as

fi =
mini∈Ii ′gi

1 +
∑

e∈Ei ′
we

(3.2)

where Ii ′ is the set of routing instances into which instance i ′ redistributes routes, gi is the

minimum difference in cost between any two paths through routing instance i, Ei ′ is the set

of edges originating from the in and out vertices associated with the routing processes in

instance i ′, and we is the weight assigned to edge e.

Administrative distance. A route can only be redistributed when: (1) the redistributor

is the only routing process on the device that has a route to the destination, or (2) the

redistributor has the lowest AD among the processes that have a route to the destination. To

model this behavior, we must ensure that the weight assigned to an intra-device redistribution

edge is congruent with the redistributor’s relative priority.

More formally, if ADi ′ < ADi ′′ < .., then it must be the case that ci ′,i < ci ′′,i < ..., where

ci ′,i is the fixed cost assigned to routes redistributed from routing instance i ′ to instance i. If

this does not hold, then we cannot construct a precise ETG. Note that we cannot simply

increase the weight of the intra-device route redistribution edge to achieve such congruence,

as this will impact the redistributee’s perceived cost of a redistributed route; Figure 3.3 shows

an example.
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Construct Comp. Precise
OSPF yes single area
RIP yes yes
eBGP yes select only by path length
Static routes yes yes
ACLs yes yes
Route filters yes yes
Route redistribution yes acyclic + costs congruent with ADs

Table 3.2: Control plane constructs modeled in ARC

Summary. Table 3.2 summarizes the protocols and features for which an ETG is compre-

hensive and precise. In Appendix A, we prove that a network with any combination of these

constructs results in ETGs that are comprehensive and, if the listed constraints are met,

precise. In the next section, we describe how to use a network’s ARC for verification and

equivalence testing.

3.5 Using ARC to Check Invariants

ARC enables us to check important invariants across arbitrary failure scenarios. It is

particularly well suited for verifying invariants that pertain to properties of a path. In such

cases, verification/equivalence testing is a matter of (dis)proving that an ETG, or a pair

of ETGs for different control planes, has a specific graph-level characteristic. This section

describes our verification and equivalence testing algorithms that at their essence compute

such graph characteristics. Furthermore, we describe how to use precise ETGs to generate

counter-examples when violations occur. These help an operator take corrective actions

before a buggy control plane is made “live” on the network.

3.5.1 Verifying Security/Availability Invariants

Invariants I1 to I4 in Table 3.1 can be expressed as graph characteristics that can be computed

on a comprehensive ETG using polynomial-time graph traversal algorithms.
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I1: Always blocked. For security reasons, an operator may want to ensure that a particular

traffic class is always blocked. For this to be true under arbitrary infrastructure faults, there

must not exist a path from Src to Dst in the traffic class’s ETG. We can check for the

existence of a path by performing a depth-first traversal of the ETG starting from Src. If

Dst remains unvisited, then the property holds. Otherwise, assuming the ETG is precise,

we provide the shortest path as a counterexample.

I2: Always reachable with < k infrastructure faults. To improve availability, an

operator may want to ensure that a particular destination d can always be reached from a

particular source s as long as there are fewer than k link failures in the network. To verify

this, we can leverage properties of graph cuts. In particular, according to Menger’s Theorem,

the maximum number of edge-disjoint paths from s to d in a digraph equals the minimum

number of edges whose removal separates s and d [30]. Thus, as long as the ETG has at

least k edge-disjoint paths from s to d, d will always be reachable from s.

Finding the number of edge-disjoint paths in an arbitrary acyclic digraph is NP-Complete

[129], but in a unit-weight graph the problem reduces to computing the max-flow/min-cut.

Because we are only concerned with the presence of paths, and not which paths are chosen

under specific infrastructure faults, we can safely convert the weight of all inter-device edges

in the ETG to 1 and the weight of intra-device edges to ∞. We set the weight of intra-device

edges to ∞, because we are only concerned with counting physical-link-disjoint paths, not

device-disjoint paths, and a weight of ∞ allows multiple physical-link-disjoint paths to

traverse the same device. We compute the max-flow/min-cut on the ETG with modified

weights to identify the number of edge-disjoint paths. When the max-flow is > k + 1, the

invariant is satisfied.

When the invariant is violated, we produce a counter-example set of edges that form a

cut of size 6 k.

I3: Always isolated. For security or performance reasons, an operator may want to

ensure that two disjoint traffic classes (s1→d1 and s2→d2; s1 6= s2, d1 6= d2) can never
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simultaneously traverse the same link. Thus, the preferred path for s1→d1 must never overlap

with the preferred path for s2→d2 under any scenario. Such overlap is possible in some

scenario if the ETG for s1→d1 has an edge in common with the ETG for s2→d2. An extreme

scenario is where all links have failed except those used in paths that contain the common

edge. The traffic isolation invariant is guaranteed to hold only if the ETGs for the two traffic

classes do not have any edges in common, a property we can easily check. However, prior to

checking this property, we recursively remove all vertices (excluding Src and Dst) whose in-

or out-degree is 0; these vertices are dead-ends and can never be part of a path from Src to

Dst.

If the pruned ETGs have any edges in common, we return the set of common edges as a

counter-example.

I4: Always traverse a middlebox. When a network includes middleboxes, such as

firewalls, an operator may want to ensure that traffic always traverses some instance of the

middlebox under arbitrary infrastructure faults. To verify this, we augment the ETG to

include special vertices that represent middlebox instances. Then we remove all middlebox

nodes from the ETG and check if there exists a path from Src to Dst. If such a path exists,

then there is some path that may be taken by the traffic that does not traverse a middlebox

instance; we return this path as a counterexample.

Other invariants. Other important security and availability invariants can also be verified

by computing graph-level attributes on the ARC. For example, we can verify traffic “always

traverses a chain of middleboxes” by removing the vertices associated with one type of

middlebox at a time, and checking if there exists a path from a vertex associated with one

of the preceding middleboxes in the chain to a vertex associated with one of the following

middleboxes in the chain. We can verify forwarding of particular traffic class is “always loop

free” by checking that the ETG does not have a cycle containing a static route vertex and

one or more vertices associated with processes in the same routing instances. We omit details

for brevity.
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3.5.2 Equivalence Testing

Invariant I5, equivalence, differs from the other invariants in three respects: (1) equivalence

testing involves multiple ARCs; (2) it requires precise ARCs, because the actual paths taken

in the network are the attributes under scrutiny; and (3) it is implemented by comparing

ETGs, rather than computing graph characteristics of ETGs. However, prior to comparing

the ETGs from different ARCs, we must make two transformations to the ETGs.

Convert process-based ETGs to interface-based ETGs. The above ARC, as we

mentioned in Section 3.3, encodes processes. This prevents us from determining if any two

control planes are equivalent, because the two control planes may use a different set of routing

instances, causing their ETGs to contain a different set of vertices and edges. To address

this issue, we convert our process-based ETGs into interface-based ETGs, which depends

only on the physical network topology, not the routing processes running atop it. As an

example, Figure 3.4 shows the transformed ETG that corresponds to the upper-left ETG in

Figure 3.1b.

In particular, we take the following steps:

1. Replace each process’s in and out vertices with an in and out vertex for each physical

interface over which the process sends/receives route advertisements.

2. Replace the inter-device edges that used to connect the out vertex of a process P on

one device to the in vertex of a process P ′ on another device with an edge connecting

the out vertex of the interface over which P sends advertisements to P ′ to the in vertex

of the interface over which P ′ receives advertisements from P.

3. Replace the intra-device edge E that used to connect a routing process’s in and out

vertices by a set of edges that connect the in vertex of each interface associated with

the process to the out vertex of every other interface associated with the process; the

edge weight is the same as the edge weight that was assigned to E. Note that an edge

is not created between the in and out vertices of the same interface, because a router
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Figure 3.4: Part of the interface-based ARC for the example control plane in Figure 3.1a

will never send traffic out the same interface on which it arrived.

4. For each intra-device edge that connected the in vertex of a routing process P to the

out vertex of another routing process P ′, create an intra-device edge from the in vertex

associated with each of P’s interfaces to the out vertices associated with P ′’s interfaces;

again, the weight of these edge is the same as the weight of the original edge.

An ARC constructed in this manner represents a network’s routing behavior with the

same fidelity as the ARC described earlier, because it captures the exact same pathways

between routers (no inter-device edges are added), and models at a fine granularity the same

software pathways within routers.

Convert edge weights to canonical weights. There are infinitely many ARCs that differ

only in the scale of their edge weights. All of these will produce the same data plane under

all infrastructure faults, and hence are equivalent. To ensure we can detect such equivalence,

we must reduce all edge weights to canonical weights. In other words, we compute the lowest

possible weight for every edge in every ETG in the ARC such that the relative order of all

possible loop-free paths between Src and Dst in each ETG is the same as using the original

weights. We can perform such a reduction using a linear program; we omit details for brevity.

After applying the above transformations, we can test the equivalence of two control

planes by checking whether their ARCs have the same vertices, edges, and edge weights.

This is facilitated by the fact that vertices are always named based on the device interfaces

to which they pertain. Thus, vertices and their incident edges can be easily matched across
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ARCs.

3.6 Implementation & Evaluation

We implemented the ARC generation process described in Sections 3.3 and 3.4 and the

verification tasks described in Section 3.5.1 in Java. We use Batfish [66] to parse Cisco

IOS configurations. From these, we extract traffic classes and generate ETGs. We use

JGraphT [15] to apply common graph algorithms (Dijkstra’s shortest path, max-flow/min-

cut, etc.) to the generated ETGs and obtain the information required to verify a particular

property. Our tool outputs the results of the requested verification for all of a network’s

traffic classes.

We evaluate ARC along two different dimensions: (1) How efficiently can we represent real

network control planes using ARC? (2) How quickly can we verify key invariants using ARC?

How does this compare to state-of-the-art control plane verification tools (e.g., Batfish [66])?

Dataset. In our evaluation we use configurations from about one-third (314) of the data

center networks we studied in Chapter 2.5 These networks have between two and a few tens

of routers connected using between one and several tens of physical links (Figure 3.5a).

Two-thirds of the 314 networks have a single routing process on each device, while the

remaining third have two processes per device on average (ignoring static routes). Similarly,

two-thirds of the networks have a single routing instance, while the rest have a handful

of instances (Figure 3.5a). As shown in Table 3.3 (and discussed in Chapter 2), only two

routing protocols are used—OSPF (37% of networks) and eBGP (all networks)—along with

static routes (27% of networks). Only one network has OSPF processes that use multiple

areas, and only 10 networks have eBGP processes that use local preference (in addition to

AS path length) for computing routes. Route redistribution occurs in 5% of the networks; in
5We exclude the remaining two-thirds of the OSP’s networks from our evaluation, because these networks:

(1) have no routers—only switches and middleboxes; (2) do not contain any Cisco devices—our current
implementation is limited to IOS and NX-OS configurations; or (3) use configuration constructs that
Batfish [66] does not parse.
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Protocols % of Networks Modifiers % of Networks
OSPF 37.6% ACLs 100.0%

single area 37.3% Route filters 84.1%
eBGP 100.0% Route redistribution 5.4%

no local preferences 96.8% acylic 5.4%
Static routes 27.1% costs align with ADs 5.4%

Table 3.3: Control plane constructs in the OSP’s networks
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Figure 3.5: Scale of the OSP’s networks

all cases, the redistribution conforms to the constraints necessary to produce a precise ARC

(Section 3.4.4).

The number of distinct traffic classes ranges from less than 100 to more than 100K

(Figure 3.5b). There are less than 10K traffic classes in 69% of the networks, and less than

1000 in 41% of networks. As shown in Table 3.3, the OSP uses route filters (84% of networks)

and ACLs (all networks) to selectively block certain traffic classes.

By cross-referencing Tables 3.2 and 3.3, it is clear that we can generate a comprehensive

ARC for all 314 networks, and a precise ARC for 97% of the networks (those with one OSPF

area and no use of BGP local preference).

ARC Efficiency. We now examine how efficiently we can represent the OSP’s network

control planes using ARC. We consider both the time to generate the ARC and the ARC’s

size, and we show how this relates to the size and complexity of a network. We generate

ARCs and verify invariants using a machine with a quad-core Intel Xeon 2.8GHz CPU and
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Figure 3.6: Time required to generate ARC for the OSP’s networks: networks are sorted by
number of traffic classes

24GB of RAM.

Figure 3.6 shows the time required to generate the ARC for each of the networks. ARC

generation takes less than 5s for 78% of the networks, and at most 11.8s across all the

networks we study. The majority of the time (85% on average) is spent parsing network

configurations; this time is roughly correlated with the number of devices in the network

(Pearson correlation co-efficient of 0.58). The remaining time is dedicated to constructing

the ETGs; this time is roughly correlated with the number of traffic classes in the network

(Pearson correlation co-efficient of 0.62), because the ARC contains an ETG for every traffic

class.

Figure 3.7 characterizes the size of the generated ETG for each network. We observe that

ETGs are relatively compact: 45% (45%) of the ETGs have fewer than 20 vertices (edges)

and 74% (70%) have fewer than 50. By design, the number of vertices is directly correlated

with the number of routing processes (including static routes) in the network for which the

ETG is generated.

As mentioned above, the number of ETGs required for each network is a function of the

number of traffic classes (Figure 3.5b). Although this seems substantial, 78% of networks’

ETGs take less than 100MB of space when stored as serialized Java objects; more efficient

encoding schemes could significantly reduce this. Furthermore, we show in the next section

that exhaustively verifying key invariants for all of a network’s traffic classes takes less than

a second for most networks.
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Figure 3.7: Size of the ETGs for the OSP’s networks: networks are sorted by number of
vertices in the ETG
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Figure 3.8: Time required to check key invariants: (a-c) show the time required to check the
invariants for all traffic classes (or pairs of traffic classes) using ARC; networks are sorted by
number of traffic classes. (d) shows the time required by Batfish to verify (lack of) reachability
across a limited set of infrastructure faults; networks are sorted by number of links.
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Verification Efficiency. We next examine how efficiently we can verify the invariants

discussed in Section 3.5.1. Figure 3.8 shows the time required to verify invariants I1–I3 for all

traffic classes (or pairs of traffic classes) for each of the networks.6 We observe that invariant

I1 can be checked for arbitrary link failures and all traffic classes in less than 500ms for 97%

of the networks, and 62% of the networks can be checked in less than 100ms. The time per

traffic class ranges from 8µs to 347µs (median 21µs).

The time required to verify invariant I2 is slightly higher, because computing max-

flow/min-cut is more complex than checking if two nodes reside in separate connected

components. However, for 99% of the networks, this property can be checked in less than 1s,

and 54% of networks can be checked in less than 100ms. In the worst case, verification takes

1.13s. The time per traffic class ranges from 7µs to 467µs (median 32µs). Note that the time

required for checking this property is independent of the value of k.

Invariant I3 takes substantially longer to verify, because we check all pairs of traffic classes,

as opposed to each individual traffic class. It takes about 1.7 hours to check all pairs of traffic

classes in the network with the largest number of traffic classes (> 100K), but this property

can be checked in less than 1 minute for all pairs of traffic classes in 73% of networks. In

practice, only a subset of traffic classes in a network require isolation, so the number of traffic

class pairs that need to be checked is substantially smaller.

Comparison with Batfish. To put our performance results in perspective, we compare the

speed of ARC-based control plane verification against Batfish [66], a state-of-the-art network

configuration analysis tool.7 We ran Batfish on the device configurations from one-third (100)

of the networks; we chose networks of varying size and complexity. We ran Batfish’s “failure

consistency” checker, which verifies that each traffic class is consistently blocked or allowed

when any one of the network’s links fails. This is similar to verifying invariants I1 and I2

(k = 2) using ARC, except verification with ARC covers all link failures, not just single link
6We do not check invariant I4, because we do not know where middleboxes reside in the OSP’s networks,

only which and how many middleboxes exist.
7We do not compare against other verification tools [87, 88, 91, 105], because they only consider the

current network data plane.
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failures.

Figure 3.8d shows the time required for Batfish to check the reachability of all traffic

classes under a limited set of link failures. We observe that the time taken by Batfish to

check all single link failure scenarios is at least three orders of magnitude larger than the

time required for ARC-based verification to check all link failure scenarios. If we were to run

Batfish for all scenarios with up to 3 link failures, the time would further increase by up to

five orders of magnitude making Batfish impractical to use in this case.

The time required by Batfish to verify invariants across a set of link failure scenarios is

a function of: (1) the number of scenarios, and (2) the time required to generate the data

plane and verify the invariant for each scenario. In our experiments, Batfish takes between

48s and 131s (median 92s) to generate the data plane and verify the invariant for each link

failure scenario. With ARC, the time required to verify invariants across arbitrary link failure

scenarios is a function of: (1) the number of traffic classes, and (2) the time required to

generate the ETG and verify the invariant for each traffic class. As mentioned above, the

median verification time per ETG for invariant I1 is 21µs and the median ETG build time

is 98µs. Thus, a network with a single link would need to have over 773K traffic classes in

order for ARC to be less efficient than Batfish.

In summary, ARC has a significant performance advantage over state-of-the-art verification

tools.

3.7 Related Work

Data plane verifiers. One class of network verifiers [33, 87, 88, 91, 105] build a model of

the network’s current data plane based on snapshots of device forwarding tables or software-

defined network (SDN) control messages. Because they verify the current data plane, these

tools cannot proactively check if a reachability invariant, such as those listed in Table 3.1,

would be satisfied if links or devices failed. Likewise, data plane verifiers cannot be used for

equivalence testing.
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Control plane verifiers. A different class of network verifiers operate on the device

configurations, allowing them to detect errors in the control plane.

Some of these verifiers model specific devices (e.g., firewalls [31, 149]) or protocols (e.g.,

BGP [64] or IPsec [77]) in isolation. As such, they are not well suited for verifying today’s data

center networks, which make use of multiple device types and routing protocols (Section 2.2).

In particular, modeling devices and protocols in isolation prevents these tools from checking

properties for traffic classes whose source and destination endpoints are connected to different

devices or routing domains.

Other control plane verifiers [47, 62, 65, 98] look for inconsistencies in device configurations,

both across devices and relative to standard organizational practices. However, configurations

that are internally consistent may still result in functional failures when infrastructure faults

occur: e.g., a link failure within an OSPF routing instance may cause the new shortest

path to pass between two VLANs, thus violating an invariant that communication between

a source endpoint in one VLAN and a destination endpoint in the other VLAN is always

blocked.

A recently developed tool, Batfish [66], models several routing protocols and their in-

teractions using Datalog. This allows Batfish to generate data plane models for a set of

infrastructure fault scenarios and verify an invariant holds across the generated data planes.

Unfortunately, tools such as Batfish are slow because they do not abstract the network at all,

but instead try to mimic low level protocol interactions and generate a full data plane. This

can take as long as a few minutes (Section 3.6). Furthermore, Batfish must generate the data

plane for every possible infrastructure fault scenario. To verify the reachability invariants

listed in Table 3.1 for all single and two-link failure scenarios, Batfish must generate and

examine O(|E|2) data planes, where E is the set of links in the network. In the worst case,

Batfish must generate an exponential (in |E|) number of data planes, making it impractical;

this occurs in the case of equivalence testing.

Dynamic checkers. Unlike static verifiers, dynamic checkers [150] can check for both
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functionality (e.g., reachability) and performance problems. However, such checking cannot

be done proactively, so applications or end hosts may be impacted by functional failures

before they are detected.

Algebraic modeling. Lastly, a significant body of work has focused on modeling routing

protocols and their interactions using algebras [32, 76, 100, 130, 131]. However, these

algebras are designed for analyzing the low-level message exchanges of routing protocols

and the intermediate states of route computation, whereas the goal of ARC is to verify

the behavior of the network in steady state. Of course, ARC’s abstraction of individual

routing protocols’ behavior does not capture all the nuances of the routing protocols used

in data centers, limiting the extent to which ARC can handle certain policies—e.g., mutual

route-redistribution [25, 99].

3.8 Summary

This chapter introduced an abstract representation for control planes (ARC) that models the

forwarding behavior of data center networks at a higher level of abstraction than existing

verification tools. This enables network operators to proactively and efficiently verify that a

given control plane configuration will result in data planes that satisfy important functional

requirements, even under arbitrary link and router failures. Furthermore, ARC allows a

network operator to efficiently check the equivalence of two control planes, which can be

useful when refactoring a network’s design to avoid practices that increase the likelihood of

network problems (Section 2.4). Our evaluation of ARC using a subset of the data center

networks we studied in Chapter 2 shows that most verification tasks complete in less than a

second, which is orders of magnitude faster than state-of-the-art tools.

While ARC is a valuable framework for reducing functional failures related to the routing

control plane, it leaves middleboxes—another important element of the data center network

and major contributor to data center failures (Section 2.4)—largely unaddressed. In particular,
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ARC only ensures traffic is routed to a middlebox instance; it does not ensure the middlebox

correctly processes the received traffic. We address this gap in the next chapter.
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4 maintaining middlebox functionality and

performance using opennf

In Chapter 2, we showed that the diversity of device types present in a data center network

strongly impacts the frequency of network problems. Such diversity arises from the presence of

middleboxes, including firewalls, load balancers, application delivery controllers (ADCs), and

intrusion detection/prevention systems (IDSs/IPSs). Middleboxes are essential for improving

the security and performance of services running within the data center, so removing some of

these devices in an effort to reduce network failures is impractical. Instead, we must look for

other ways to reduce the frequency of problems arising from middleboxes.

ARC (Chapter 3) addresses one possible cause of middlebox-related problems: it ensures

traffic is always routed to a middlebox instance (assuming at least one instance is active and

reachable) even amidst arbitrary link failures. However, ARC does not ensure the middlebox

correctly processes the received traffic, nor does it address other common middlebox issues

that may lead to functional or performance failures. Recent studies [75, 113] of middlebox-

induced failures in some of the data center networks we studied in Chapters 2 and 3 show that

common problems include: connectivity errors (e.g., link flaps), hardware faults, software

faults (e.g., unexpected reboots), overload, and misconfiguration (Table 4.1). The last of

these aligns with our findings in Chapter 2, where we showed that configuration changes

have a strong impact on the frequency of network problems.

We believe several of the aforementioned issues can be eliminated (or reduced) by replacing

individual hardware appliances—the norm in today’s data center networks [75, 113]—with

a collection of software instances that expose a “one-big-middlebox” abstraction. Such

an abstraction provides the illusion of a monolithic, always available, high performing

middlebox. The middlebox is configured through a single, centralized interface, thereby

reducing the likelihood of configuration incompatibilities (e.g., mismatched cryptographic

keys) between individual middlebox instances [113]. Moreover, running software instances
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Setup
Hardware One-big-middlebox One-big-middlebox

Issue appliances without OpenNF with OpenNF
Connectivity errors Yes Reduced/eliminated
Hardware faults Yes Reduced/eliminated
Software faults Yes Unchanged
Misconfiguration Yes Reduced
Overload Yes Exacerbated Reduced/eliminated
Missing/inconsistent state – New Issue Eliminated

Table 4.1: Possible causes of middlebox failures

atop generic compute resources eliminates the long repair (and outage) times associated with

hardware faults [113], as new middlebox instances can be quickly launched on another server

without needing to wait for a specialized device to be repaired or replaced. Finally, software

middleboxes can reduce the failures arising from connectivity errors, as new middlebox

instances can be launched on compute nodes anywhere in the data center network.

However, a one-big-middlebox abstraction backed by a collection of software instances

running in virtual machines or containers is not a panacea. Software faults, some types of

misconfiguration, and overload problems persist in this setting (Table 4.1). In fact, overload

problems may be exacerbated, as software middleboxes are generally slower than their

hardware counterparts [55]. Furthermore, unless great care is taken in managing the lifecycle

of middlebox instances and the distribution of traffic among them, a new class of problems

may arise due to missing or inconsistent middlebox state.

To illustrate how such problems can arise, consider a scenario in which traffic must

be redistributed among a pair of middlebox instances (e.g., a pair of IDSs) to reduce the

load on one of the instances and avoid a performance failure (Figure 4.1). Middleboxes’

operations are typically stateful—i.e., the processing of one packet influences the processing

of a later packet from the same connection or end host—so each middlebox instance will have

state objects corresponding to the in-progress flows traversing that instance. When some

flows are rerouted from the overloaded instance (IDS1) to the underloaded instance (IDS2),

the underloaded instance may process the subsequent packets of these flows incorrectly,
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Figure 4.1: A scenario requiring scale-out and special handling of middlebox state to avoid
performance and functional failures: The IDS (e.g., Bro [112]) processes a copy of all traffic
entering/leaving the data center to detect port scans and malware in HTTP flows. For each
active flow, the IDS maintains a connection object with source and destination IPs and ports,
as well as several analyzer objects with protocol-specific state (e.g., current TCP sequence
numbers or partially reassembled HTTP payloads). It also maintains host-specific connection
counters. If a second IDS instance is launched and the blue (darker) flow is reassigned to the
second instance to avoid performance issues, then the flow-specific state must be moved and
the host-specific state must be copied or shared to ensure no attacks go undetected.

because the state established during the processing of the flows’ prior packets is not available

on the underloaded instance. Unlike forwarding tables, which can be reconstructed by a

network’s control plane, middlebox state depends on prior data traffic and hence cannot be

reconstructed. In order to avoid a functional failure due to the missing state, we must either:

(1) transfer or replicate the state associated with the rerouted flows from the overloaded to

the underloaded instance, or (2) assign only new flows to the underloaded instance. The latter

has the drawback of not reducing the load on the overloaded instance until some in-progress

flows complete, thus this strategy may still result in a performance failure.

A similar problem arises if a middlebox instance loses connectivity, and we must reroute

flows to a different middlebox instance to avoid a functional failure. However, in this scenario,

the only way to avoid a failure is to reroute all flows away from the unconnected instance and

transfer or replicate their state.1 Likewise, when a middlebox instance crashes or restarts due
1We assume each middlebox instance has a dedicated management interface, as is the case with the

hardware appliances in the networks we studied in Chapters 2 and 3, which is not subjected to the same
connectivity errors as the interfaces and links over which data traffic arrives.
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a software or hardware fault, we can only avoid a functional failure if we have proactively

replicated the failed instance’s state.

This chapter introduces a middlebox state management framework, called OpenNF, that

prevents functional failures due to missing or inconsistent middlebox state. In particular,

OpenNF provides efficient, coordinated control of middlebox state and the traffic a middlebox

receives in order to allow quick, safe, and fine-grained reallocation of flows across middlebox

instances. Using OpenNF, middlebox vendors can create rich control applications that

expose a one-big-middlebox abstraction and dynamically redistribute packet processing

responsibilities and state to avoid functional and performance failures from arising due to

overload, lost connectivity, or software or hardware faults (Table 4.1).

We begin this chapter with an overview of the goals of a one-big-middlebox abstraction and

the middlebox state management requirements they induce (Section 4.1). We then present

an overview of OpenNF (Section 4.2), followed by our APIs for interacting with middleboxes

(Section 4.3) and our algorithms for safely transferring and replicating middlebox state

(Sections 4.4 and 4.5). Afterwards, we show how our APIs can be used to prevent functional

and performance failures amidst infrastructure faults and workload changes (Section 4.6).

Finally, we provide an overview of our implementation (Section 4.7), and we evaluate

OpenNF’s benefits and overhead using open source middleboxes and traffic traces from cloud

and private data centers (Section 4.8).

4.1 Goals and Requirements

Goals. A one-big-middlebox abstraction should provide the illusion of an infinitely scalable,

always available, predictably performing middlebox. The abstraction should mask functional

or performance issues that arise on the underlying middlebox instances and guarantee

output consistency—i.e., the aggregate output of the collection of underlying instances

should be equivalent to the output produced by a single monolithic middlebox instance [121].
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Additionally, the abstraction should be realized efficiently, using only the minimum resources

required to maintain availability and performance.

Requirements. Achieving these goals requires managing the lifecycle of middlebox instances

and the distribution of traffic among them as follows:

• Predictable performance requires redistributing traffic to eliminate hotspots and launch-

ing new middlebox instances when the current collective processing capacity is insuffi-

cient to satisfy performance service level objectives (SLOs).

• High availability requires rerouting traffic to different (possibly new) middlebox instances

when an instance is down (due to a hardware or software fault) or unreachable (due to

connectivity errors).

• Efficiency requires consolidating traffic and terminating unneeded middlebox instances

as quickly as possible.

• Output consistency requires preserving the preconditions assumed by the underlying

middlebox instances: e.g., middleboxes generally assume they can access (and update)

any state they created while processing prior packets from the same flow.

Unfortunately, the requirements imposed by these goals are in conflict. For example,

as discussed in the opening of this chapter, redistributing in-progress flows to eliminate a

hotspot will cause the state for those flows to be unavailable at the middlebox instance to

which the traffic is assigned, thus violating the requirement that we preserve the preconditions

assumed by the middlebox. In the case of a load balancer, this may cause the rerouted

connections to be reset, or the subsequent packets may be sent to a different server than the

prior packets, which may cause the server to mishandle or reset the connections. Similarly, in

the case of an IDS or IPS, malicious content in the rerouted connections may not be detected,

because signature matching is split between the original and new instance, and the latter

lacks information about prior packets. To achieve predictable performance, efficiency, and

output consistency, we need a way to transfer subsets of middlebox state in concert with
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routing updates. Depending on how traffic is split between middlebox instances and the

granularity at which a middlebox maintains state (e.g., per-connection, per-host, per-subnet,

etc.), we may also need to share subsets of middlebox state such that multiple middlebox

instances can access and update the same state if each of them receives part of the traffic to

which the state pertains.

Rerouting traffic to maintain high availability can cause similar issues. However, when a

middlebox instance crashes due to a hardware or software fault, we have no way to obtain its

state in order to achieve output consistency. Instead, we must proactively replicate middlebox

state to ensure it can be made available at a new middlebox instance in the event the current

instance crashes and traffic must be rerouted. Furthermore, to maintain efficiency, we want

to avoid running a dedicated standby instance for every active middlebox instance. A more

efficient approach is to divide the affected traffic among (a subset of) the remaining middlebox

instances [120]; this requires the ability to replicate subsets of middlebox state to different

instances.

Existing Solutions. Many application-agnostic solutions have been developed for trans-

ferring or replicating state associated with applications running in a hardware-independent

environment. For example Xen [49] and CRIU [8] allow an entire virtual machine or process,

respectively, to be migrated to another host. Similarly, Remus [52] facilitates high frequency

replication of an entire virtual machine with minimal pauses in execution. However, these

solutions are unsuitable for addressing the above requirements, because they do not allow

migration or replication of a subset of a middlebox instance’s state. For example, if we wanted

to divide a middlebox instance’s traffic among two instances, we would need to launch a clone

of the original instance in order to effectively “transfer” the middlebox state associated with

the rerouted traffic. The additional, unneeded state included in the clone not only wastes

memory, but more crucially can cause undesirable middlebox behavior: e.g., an IDS may

generate false alerts (we quantify this in Section 4.8.5). Moreover, this approach prevents

state from multiple middlebox instances from being transferred to a single middlebox instance,
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Figure 4.2: OpenNF architecture

precluding our ability to consolidate middlebox instances in order to maintain efficiency.

Thus, we advocate trading-off the need for middlebox code modifications in exchange for

efficiency and performance.

Many middlebox-oriented solutions with similar goals to ours have also been devel-

oped [86, 120, 121, 127]. However, as we describe later, these solutions: require significantly

restructuring how a middlebox internally organizes and allocates state [86, 120, 121] (Sec-

tion 4.3), do not provide important safety guarantees [121] (Section 4.4), and restrict how

traffic can be redistributed [127] (Section 4.6).

4.2 OpenNF Architecture

OpenNF is a novel control plane architecture (Figure 4.2) that satisfies the aforementioned

requirements. In this section, we outline our key ideas; the next three sections provide the

details.

OpenNF allows control applications (Section 4.6) to closely manage the functionality and

performance of a data center’s middleboxes to avoid failures. Based on middlebox output

or external input, control applications: (1) determine the precise sets of flows that specific

middlebox instances should process, (2) direct the controller to provide the needed state at

each instance, including both flow-specific state and state shared between flows, and (3) ask
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the controller to provide certain guarantees on state and state operations.

In turn, the OpenNF controller (Sections 4.4 and 4.5) encapsulates the complexities of

distributed state control and, when requested, guarantees loss-freedom, order-preservation,

and consistency for state and state operations. We design two novel schemes to overcome

underlying race conditions: (1) an event abstraction that the controller uses to closely observe

updates to state, or to prevent updates but know what update was intended, and (2) “tracer”

packets that help the controller determine when all of a flow’s outstanding packets have

arrived at a middlebox instance. Using just the former, the controller can ensure move

operations are loss-free, and state copies are eventually consistent. By carefully sequencing

state updates or update prevention (scheme 1) with scheme 2, the controller can ensure

move operations are loss-free and order-preserving; we provide a formal proof in Appendix B.

Lastly, by buffering events corresponding to intended updates and handling them one at a

time in conjunction with piece-meal copying of state, the controller can ensure state copies

are strongly or strictly consistent.

OpenNF defines a standard middlebox interface (Section 4.3) for a controller to request

events or the export or import of internal middlebox state. We leave it to the middleboxes to

furnish all state matching a filter (e.g., a 5-tuple) specified in an export call, and to determine

how to merge existing state with state provided in an import call. This requires modest

additions to middleboxes—we show in Section 4.8.3 that the necessary modifications increase

middlebox code size by 3–8%, mostly due to serialization functions—and, crucially, does

not restrict, or require modifications to, the internal state data structures that middleboxes

maintain. Furthermore, we use the well-defined notion of a flow (e.g., TCP connection) as

the basis for specifying which state to export and import. This naturally aligns with the way

middleboxes already create, read, and update state.
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Figure 4.3: Middlebox state taxonomy, with state from the Squid caching proxy as an example

4.3 Middlebox API

In this section, we describe the design of OpenNF’s middlebox API. To ensure a variety

of middleboxes can be easily integrated into OpenNF, we must address two challenges: (1)

account for the diversity of middlebox state and (2) minimize middlebox modifications.

State Taxonomy. To address the first challenge, we must identify commonalities in how

middlebox state is allocated and accessed across various middleboxes. To this end, we

examined several types of middleboxes from a variety of vendors, including: NATs [13],

IDSs [112], load balancers [3, 10], caching proxies [26], WAN optimizers [35], and traffic

monitors [19, 23].

We observe that state created or updated by a middlebox while processing traffic applies

to either an individual flow (e.g., a TCP connection) or a collection of flows. As shown in

Figure 4.1, the Bro IDS [112] maintains connection and analyzer objects for each TCP/UD-

P/ICMP flow and state for each host summarizing observations relating to all flows involving

that host. Similarly, as shown in Figure 4.3, the Squid caching proxy [26] maintains socket

context, request context, and reply context for each client connection and cache entries for

each requested web object. Most middleboxes also have state which is updated for every

packet or flow the middlebox processes: e.g., statistics about the number of packets/flows

the middlebox processed.2

Thus, as shown in Figure 4.3, we classify middlebox state based on scope, or how many
2Middleboxes also have configuration state. It is read but never updated by middleboxes, making it easy

to handle; we omit the details for brevity.
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flows a middlebox-created piece of state applies to—one flow (per-flow), multiple flows (multi-

flow), or all flows (all-flow). In particular, per-flow state refers to structures/objects that are

read or updated only when processing packets from the same flow (e.g., a TCP connection),

while multi-flow state is read or updated when processing packets from multiple, but not all,

flows.

Thinking about each piece of middlebox-created state in terms of its association with flows

provides a natural way for reasoning about how a control application should move/copy/share

state. For example, a control application that routes all flows destined for a host H to a

specific middlebox instance can assume the instance will need all per-flow state for flows

destined for H and all multi-flow state which stores information related to one or more flows

destined for H. This applies even in the case of seemingly non-flow-based state: e.g., the

fingerprint table in a redundancy eliminator is classified as all-flows state, and cache entries

in a Squid caching proxy are multi-flow state that can be referenced by client IP (to refer to

cached objects actively being served), server IP, or URL.

Assuming traffic is never split among middlebox instances at a sub-flow granularity, a

control application should always move (e.g., when rebalancing load) or copy (e.g., when

creating a replica in case of an infrastructure fault) per-flow state, as packets from the same

flow will never be processed by more than one middlebox instance at the same time. Whether

to move, copy, or share multi-flow state depends on the granularity of a middlebox’s analyses

relative to the granularity at which traffic is split among middlebox instances. We generally

expect control applications (Section 4.6) to be written by the middlebox vendor who is well

equipped to specify the appropriate operations.

Other middlebox state management frameworks either draw no association between state

and flows [83, 86], or they do not distinguish between multi-flow and all-flows state [121].

This makes it difficult to know the exact set of state to move, copy, or share when flows are

re-routed. For example, in the Squid caching proxy, cached web objects (multi-flow states)

that are currently being sent to clients must be copied to avoid disrupting these in-progress
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connections, while other cached objects may or may not be copied depending on the SLOs a

control application needs to satisfy (e.g., high cache hit ratio vs. fast scale out).3

We also discovered during our examination of middleboxes that they tend to: (1) allocate

state at many points during flow processing—e.g., when the Bro IDS is monitoring for

malware in HTTP sessions, it allocates state when the connection starts, as protocols are

identified, and as HTTP reply data is received—and (2) organize/label state in many different

ways—e.g., the Squid caching proxy organizes some state based on a traditional 5-tuple and

some state based on a URL. Other frameworks [121] assume middleboxes allocate and organize

state in particular ways (e.g., allocate state once for each flow), which means middleboxes

may need significant changes to use these frameworks.

Middlebox API to Export/Import State. We leverage our taxonomy to design a simple

API for middleboxes to export and import pieces of state; it requires minimal middlebox

modifications. In particular, we leverage the well defined notion of a flow (e.g., TCP or UDP

connection) and our definition of state scope to allow a controller to specify exactly which

state to export or import. State gathering and merging is delegated to middleboxes which

perform these tasks within the context of their existing internal architecture.

For each scope we provide three simple functions: get, put, and delete. More formally,

the functions we expect each middlebox to implement are:

multimap<flowid,chunk> getPerflow(filter)

void putPerflow(multimap<flowid,chunk>)

void delPerflow(list<flowid>)

multimap<flowid,chunk> getMultiflow(filter)

void putMultiflow(multimap<flowid,chunk>)

void delMultiflow(list<flowid>)

list<chunk> getAllflows()

void putAllflows(list<chunk>)

3Middlebox-specific state sharing features, such as inter-cache protocols in Squid, can also be leveraged,
but they do not avoid the need for per-flow state, and some multi-flow state, to be moved or copied.
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A filter is a dictionary specifying values for one or more standard packet header fields (e.g.,

source/destination IP, network protocol, source/destination ports), similar to match criteria

in OpenFlow [108].4 This defines the set of flows whose state to get/put/delete. Header

fields not specified are assumed to be wildcards. The getAllflows and putAllflows functions

do not contain a filter because they refer to state that applies to all flows. Similarly, there is

no delAllflows function because all-flows state is always relevant regardless of the traffic a

middlebox is processing.

A chunk of state consists of one or more related internal middlebox structures, or objects,

associated with the same flow (or set of flows): e.g., a chunk of per-flow state for the Bro IDS

contains a Conn object and all per-flow objects it references (Figure 4.1). A corresponding

flowid is provided for each chunk of per-flow and multi-flow state. The flowid is a dictionary

of header fields and values that describe the exact flow (e.g., TCP or UDP connection) or set

of flows (e.g., host or subnet) to which the state pertains. For example, a per-flow chunk from

the Bro IDS has a flowid that includes the source and destination IPs, ports, and transport

protocol, while a multi-flow chunk containing a counter for an end host has a flowid that

only includes the host’s IP.

When getPerflow or getMultiflow is called, the middlebox is responsible for identifying and

providing all per-flow or multi-flow state that pertains to flows matching the filter. Crucially,

only fields relevant to the state are matched against the filter; other fields in the filter are

ignored: e.g., in the Bro IDS, only the IP fields in a filter will be considered when determining

which end host connection counters to return. This API design avoids the need for a control

application to be aware of the way a middlebox internally organizes state. Additionally,

by identifying and exporting state on-demand, we avoid the need to change a middlebox’s

architecture to conform to a specific memory allocation strategy [121].

The middlebox is also responsible for replacing or combining existing state for a given flow

(or set of flows) with state provided in an invocation of putPerflow (or putMultiflow). Common
4Some middleboxes may also support extended filters and flowids that include header fields for other

common protocols: e.g., the Squid caching proxy may include the HTTP URL.
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methods of combining state include adding or averaging values (for counters), selecting the

greatest or least value (for timestamps), and calculating the union or intersection of sets (for

lists of addresses or ports). State merging must be implemented by individual middleboxes

because the diversity of internal state structures makes it prohibitive to provide a generic

solution.

Middlebox API to Observe/Prevent State Updates. The API described above does

not interpose on internal state creations and accesses. However, there are times when we need

to prevent a middlebox instance from updating state—e.g., while state is being moved—or

we want to know updates are happening—e.g., to determine when to copy state.

OpenNF uses two mechanisms to prevent and observe updates: (1) having middleboxes

generate packet-received events for certain packets—the controller tells the middlebox which

subset of packets should trigger events—and (2) controlling how middleboxes should act on

the packets that generate events—process normally, buffer locally, or do not process them.

Specifically, we add the following functions to the API:

void enableEvents(filter,action)

void disableEvents(filter)

The filter defines the set of packets that should trigger events; it has the same format as

described above. The action may be process-normally, buffer-locally, or do-not-process; any

buffered packets are released to the middlebox for processing when events are disabled. The

events themselves contain a copy of the triggering packet. The functions are implemented in

a shared library that is linked with each middlebox during compilation (Section 4.7); hooks

into the shared library must be added to a middlebox’s packet receive function.

In the next two sections, we discuss how events are used to realize important guarantees

on state and state operations.
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4.4 Controller API: Move Operation

The OpenNF controller uses the middlebox API to implement operations for moving, copying,

and sharing state between middlebox instances while guaranteeing loss-freedom, order-

preservation, and various forms of consistency, if requested. The main challenge in moving,

copying, and sharing state is designing suitable, low-overhead mechanisms to provide the

necessary guarantees. In this section, we show how we use events together with tracer packets

to provide a loss-free and order-preserving move operation (we provide a formal proof of

these guarantees in Appendix B). In the next section, we describe how OpenNF’s copy and

share operations provide eventual, strong, or strict consistency for state required by multiple

middlebox instances.

4.4.1 Syntax and semantics

OpenNF’s move operation transfers the state and traffic for a set of flows from one middlebox

instance (srcInst) to another (dstInst). Its syntax is:

move(srcInst,dstInst,filter,scope,properties)

As in the middlebox API, the set of flows is defined by filter; a single flow is the finest

granularity at which a move can occur. The scope argument specifies which class(es) of state

(per-flow and/or multi-flow) to move, and the properties argument defines whether the move

should be loss-free and order-preserving.

This design appropriately balances OpenNF’s generality and complexity. Not offering

some guarantees would reduce complexity but make OpenNF insufficient for use with many

middleboxes—e.g., a redundancy eliminator [35] will incorrectly reconstruct packets when

re-ordering occurs. Similarly, always enforcing the strongest guarantees would simplify the

API but make OpenNF insufficient for scenarios with tight SLOs—e.g., a loss-free and

order-preserving move is unnecessary for a NAT, and the latency increase imposed by these

guarantees (Section 4.8.1) could cripple VoIP sessions.
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Figure 4.4: Assumed topologies for move operation

4.4.2 Implementation

We now describe how the move operation is implemented and various guarantees are realized.

In what follows, gw denotes a gateway through which all packets matching filter will pass

before diverging on their paths to reach srcInst and dstInst (Figure 4.4). The gateway

is responsible for directing network traffic to the appropriate middlebox instance in the

data center. The gateway may be implemented as: a dedicated (virtual) appliance whose

architecture is similar to a load balancer, an SDN switch, or a router whose forwarding

behavior is carefully controlled using static routes or fake route advertisements designed to

provide SDN-like control [143]. Furthermore, we assume TCP-based control channels are

used between the OpenNF controller and middleboxes, so middlebox API calls, state, and

events are not lost or reordered. However, packets may be lost (but we assume not reordered)

on the network paths from gw to srcInst and gw to dstInst.

No Guarantees. For a move without guarantees, the controller executes the following steps

in sequence: (1) call getPerflow on srcInst, (2) call delPerflow on srcInst, (3) call putPerflow

on dstInst, and (4) update the flow table on gw to forward the affected flows to dstInst.

Each step is executed only after the controller has received confirmation that the middlebox

instance or gw as completed the preceding step. To move multi-flow state as well (or instead),

the analogous multi-flow functions are also (instead) called. For the rest of this section, we

assume the scope is per-flow, but our ideas can easily be extended to multi-flow state.

With the above sequence of steps, packets corresponding to the state being moved may

continue to arrive at srcInst from the start of getPerflow until after the forwarding change at



92

gw takes effect and all packets in transit to srcInst have arrived and been read from the NIC

and operating system buffers. A simple approach of dropping these packets when srcInst

receives them [121] prevents srcInst from establishing new state for the flows or failing due

to missing state. But this is only acceptable in scenarios where an application is willing to

tolerate the effects of skipped processing: e.g., scan detection in the Bro IDS will still function

if some TCP packets are not processed, but it may take longer to detect scans. Alternatively,

a middlebox may be on the forwarding path between flow endpoints (Figure 4.4b), e.g., a

Squid caching proxy, in which case dropped TCP packets will be retransmitted, although

throughput will be reduced.

Loss-free move. In some situations loss is problematic: e.g., the Bro IDS’s malware

detection script will compute incorrect md5sums and fail to detect malicious content if part

of an HTTP reply is missing; we quantify this in Section 4.8.2. Similarly, a monitoring

middlebox that measures traffic volumes for billing purposes will undercount traffic if packets

are lost. Thus, we need a move operation that satisfies the following property:

Loss-free: All state updates resulting from packet processing should be reflected at

the destination instance, and all packets the switch receives should be processed.

The first half of this property is important for ensuring all information pertaining to a flow

(or group of flows) is available at the instance where subsequent packet processing for the

flow(s) will occur, and that information is not left, or discarded, at the original instance. The

latter half ensures a middlebox does not miss gathering important information about a flow.

In an attempt to be loss-free, Split/Merge halts, and buffers at the controller, all traffic

arriving at gw while migrating per-flow state [121]. However, when traffic is halted, packets

may already be in-transit to srcInst, or sitting in NIC or operating system queues at srcInst.

Split/Merge drops these packets when they (arrive and) are dequeued at srcInst. This ensures

that srcInst does not attempt to update (or create new) per-flow state after the transfer of

state has started, guaranteeing the first half of our loss-free property. However, dropping
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packets at srcInst violates the latter half. While we could modify Split/Merge to delay state

transfer until packets have drained from the network and local queues, it is impossible to

know how long to wait, and extra waiting increases the delay imposed on packets buffered at

the controller.

What then should we do to ensure loss-freedom in the face of packets that are in-transit

(or buffered) when the move operation starts? In OpenNF, we leverage events raised by

middleboxes. Specifically, the controller calls enableEvents(filter,do-not-process) on srcInst,

and waits for the operation to complete, before calling getPerflow. This causes srcInst to raise

an event for each received packet matching filter. The events are buffered at the controller

until the putPerflow call on dstInst completes. Then, the packet in each buffered event is

sent to dstInst via the control channel; any events arriving at the controller after the buffer

has been emptied are handled immediately in the same way. Lastly, the flow table on gw is

updated to forward the affected flows to dstInst.

Calling disableEvents(filter) on srcInst is unnecessary, because packets matching filter

will eventually stop arriving at srcInst and no more events will be generated. Nonetheless, to

eliminate the need for srcInst to check if it should raised events for incoming packets, the

controller can issue this call after several minutes—i.e., after all packets matching filter have

likely arrived or timed out.

Order-preserving move. In addition to loss, middleboxes can be negatively affected by

re-ordering. For example, the “weird activity” policy script included with the Bro IDS will

raise a false “SYN_inside_connection” alert if the IDS receives and processes SYN and data

packets in a different order than they were actually exchanged by the connection endpoints.

Another example is a redundancy elimination decoder [35] where an encoded packet arriving

before the data packet w.r.t. which it was encoded will be silently dropped; this can cause

the decoder’s data store to rapidly become out of sync with the encoders.

Thus, we need a move operation that satisfies the following:

Order-preserving: All packets should be processed by a middlebox instance in the
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Figure 4.5: Order-preserving problem in Split/Merge

order they were forwarded to the middlebox instance by the switch.

This property applies within one direction of a flow (e.g., process SYN before ACK), across

both directions of a flow5 (e.g., process SYN before SYN+ACK), and across flows sent to the

same middlebox instance (e.g., process an FTP get command before the SYN for the new

transfer connection). In other words, we enforce a total order on the packets in a group of

flows (defined by filter) assigned to the same middlebox instance, but we do not enforce a

total order over all packets. If the latter is necessary for correct middlebox operation (e.g., if

FTP control and data flows are sent to different IDS instances), then a control application

can leverage our share operation with strict consistency (Section 4.5).

Unfortunately, neither Split/Merge nor the loss-free move described above are order-pre-

serving. The basic problem in both systems is a race between flushing packets buffered at

the controller and changing the forwarding table at gw to forward all packets to dstInst.

Figure 4.5 illustrates the problem in the context of Split/Merge. Even if all buffered packets

(pi and pi+1 ) are flushed before the controller requests a forwarding table update at gw,

another packet (pi+2 ) may arrive at gw and be forwarded to the controller before gw applies

the forwarding table update. Once the update is applied, gw may start forwarding packets
5If packets in opposite directions do not traverse a common gateway before reaching the middlebox—e.g.,

a NAT is placed between two gateways—then we lack a vantage point to know the total order of packets
across directions, and we cannot guarantee such an order unless it is enforced by a flow’s end-points—e.g., a
server will not send SYN+ACK until the NAT forwards the SYN from a client.



95

1 eventReceivedFromSrcInst(event)
2 if event.packet == TRACER_PKT then
3 srcProcessedLastPkt ← true
4 if shouldBufferEvents then // Buffer packets from srcInst
5 eventQueue.enqueue(event.packet)
6 else // Send immediately to dstInst
7 mark(event.packet, do-not-buffer)
8 send(event.packet, dstInst)

9 eventReceivedFromDstInst(event)
10 if event.packet == TRACER_PKT then
11 signal(DST_PROCESSED_LAST_PKT) // wait @ 26

12 moveLossfreeOrderpreserve(srcInst, dstInst, filter)
13 shouldBufferEvents ← true
14 srcInst.enableEvents(filter, do-not-process) // Send srcInst’s packets to controller
15 chunks ← srcInst.getPerflow(filter) // Start state transfer
16 srcInst.delPerflow(chunks.keys)
17 dstInst.putPerflow(chunks) // Finish state transfer
18 foreach event in eventQueue do // Send controller’s buffer to dstInst
19 mark(event.packet, do-not-buffer)
20 send(event.packet, dstInst)
21 shouldBufferEvents ← false
22 dstInst.enableEvents(filter, buffer-locally) // Buffer unmarked packets at dstInst
23 gw.install(filter, dstInst) // Reroute traffic
24 repeat // Transmit tracer packet
25 gw.forward(TRACER_PKT, srcInst)
26 signaled ← wait(DST_PROCESSED_LAST_PKT, TIMEOUT)
27 until signaled // Wait for dstInst to receive tracer packet
28 dstInst.disableEvents(filter) // Release and process packets buffered at dstInst

Figure 4.6: Pseudo-code executed by the controller for a loss-free and order-preserving
move

(pi+3 ) to dstInst, but the controller may not have received the packet pi+2 from gw. Thus,

the packet pi+2 will be forwarded to dstInst after a later packet of the flow (pi+3 ) has already

been forwarded to dstInst.

We use a combination of events and tracer packets to guarantee a loss-free and order-pre-

serving move. Figure 4.6 has psuedo-code for the steps.

We start with the steps used for a loss-free move, through calling putPerflow on dstInst

(lines 12–17). After putPerflow completes we extract the packet from each buffered event,

mark it with a special “do-not-buffer” flag, and send it to dstInst (lines 18–20); any events

arriving at the controller after the buffer has been emptied are handled immediately in the

same way (lines 6–8). Then, we call enableEvents(filter,buffer-locally)on dstInst (line 22),
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so that any packets forwarded directly to dstInst by gw will be buffered; note that the packets

marked with “do-not-buffer” are not buffered.

After enabling buffering on dstInst, we update the forwarding entry for filter on gw to

forward matching packets to dstInst (line 23). We then send a tracer packet—i.e., an empty

data packet marked with a special flag—to gw to be forwarded to srcInst (line 25). Since we

have already re-routed the relevant traffic to dstInst, the tracer packet should be the last

packet to arrive at srcInst. Thus, when we get an event from srcInst containing the tracer

packet (lines 1–3), we know that srcInst has processed the last regular packet. We pass the

tracer packet along to dstInst just as we do with all regular packets (lines 6–8).

Lastly, we wait (line 26) for an event from dstInst indicating it has received the tracer

packet. Because the tracer packet is the last packet the controller sends to dstInst, an

event from dstInst indicating it has received this packet (lines 9–11) implies that dstInst

has processed all packets that were originally delivered to srcInst. Thus, we can safely call

disableEvents(filter) on dstInst to release any packets that had already been sent to dstInst

by gw and were buffered at dstInst (line 28).6 Since the tracer packet could be lost on the

path from gw to srcInst, we wait with a timeout and retransmit the tracer packet if necessary

(lines 24-27).

In Appendix B, we formally prove that this sequence of steps is loss-free and order-preser-

ving, even when network paths are lossy. Providing these guarantees when there is reordering

on the path from gw to srcInst remains an open problem.

4.4.3 Optimizations

Supporting the above guarantees introduces both efficiency and scalability challenges. In

particular, packets must be buffered at the controller from the time enableEvents is called

until after putPerflow completes. This imposes high latency overhead on packets arriving

during the transfer and requires significant CPU and memory capacity at the controller. For
6Packets arriving at dstInst continue to be buffered until the buffer has been emptied.
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example, consider a scenario where we move 800 flows between two instances of the Bro

IDS [112], while traffic is flowing at a rate of 20K packets/second (0.15Gbps). Buffering

packets at the controller increases average packet latencies by over 110x (≈75ms), requires a

buffer capacity of 38K packets, and consumes 6% of the controller’s CPU7.

Furthermore, latency overhead and resource demands grow as the controller receives more

packets (due to an increase in traffic rate and/or an increase in state export/import time).

For example, when the packet rate in the above scenario rises from 4K to 20K packets/second,

latency overhead rises from 5ms to 75ms—a 15x increase in latency with just a 5x increase

in traffic rate. As the traffic rate increases beyond a few Gbps, or state export/import

time increases beyond a few tens of milliseconds, the controller may not be able to provide

the required buffer capacity, especially if multiple moves are occurring simultaneously; the

resulting buffer overflow will violate the loss-free guarantee that prompted buffering in the

first place.

We introduce four optimizations to address these issues and avoid functional and perfor-

mance failures during a loss-free or order-preserving move.

Pipelining. Our first optimization aims to reduce latency overhead, as well as buffer

demands, by reducing the total time taken to complete a move operation. In particular,

we leverage the fact that getPerflow and putPerflow operations can be, at least partially,

executed in parallel. Rather than returning all requested states as a single result, the srcInst

can return each chunk of per-flow state immediately, and the controller can immediately call

putPerflow with just that chunk.8 The forwarding update at gw occurs after the getPerflow

and all putPerflow calls have returned.

Peer-to-peer (P2P) transfer. Our second optimization similarly aims to reduce the total

time taken to complete a move operation by avoiding triangular routing. In other words,

we transfer state and packets directly from srcInst to dstInst without passing through the
7Our controller machine is equipped with a 4-core 2.8GHz Intel Xeon CPU and 6GB of memory.
8Alternatively, an application could issue multiple pipelined moves that each cover a smaller portion of

the flow space. However, this requires more forwarding rules in gw and requires the application to know how
flows are divided among the flow space.
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controller. This accelerates the state transfer and reduces the CPU and memory burden on

the controller.

This optimization relies on two new middlebox API functions (implemented in the shared

library described in Section 4.7):

void transfer(dstInst,filter,scope,properties)

void accept(srcInst)

The former is invoked on srcInst to indicate it should: (1) connect to dstInst, (2) export

and send any state of type scope pertaining to active flows in filter, and (3) send packets

that arrive during the state transfer to be processed by dstInst. The latter is invoked on

dstInst to indicate it should: (1) listen for an incoming socket connection from srcInst,

(2) import any state received over the connection, and (3) buffer and process any packets

received over the connection. Both functions can be implemented in a middlebox-agnostic

manner using the existing export (getPerflow/getMultiflow/getAllflows), import (putPer-

flow/putMultiflow/putAllflows), and event raising functions presented in Section 4.3.

Late locking and early release. The additional latency imposed on redirected packets

can be further reduced by following a late locking and early release (LLER) strategy. For

late-locking, the controller calls getPerflow on srcInst with a special flag instructing srcInst to

enable events for each flow just before the corresponding per-flow state is prepared for export

(avoiding the need to call enableEvents for all flows beforehand).9 Also, once putPerflow for a

specific chunk returns, the controller (or dstInst if conducting a P2P transfer) can release any

events pertaining to that chunk.

Packet reprocessing. Our final optimization fundamentally changes the way OpenNF

handles packets that arrive during a move operation. In particular, we allow srcInst to

continue processing all packets that arrive during a move operation. This processing: (1)

updates state at srcInst, and (2) produces any output corresponding to the received packets.

For example, a network address translator (NAT) rewrites packet headers and outputs the
9Internally, the middlebox calls enableEvents on a per-flow basis prior to exporting the flow’s state.
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modified packets, while an IDS logs alerts if malicious traffic is detected. If a packet matching

filter triggers an update to state, a copy of the packet is sent to dstInst, where it is reprocessed

to bring the transferred state “up to speed.” The packet is reprocessed by dstInst solely to

obtain any state updates the middlebox requires to process future packets. For example, a

NAT needs the mapping created during the processing of the first packet of a flow in order

to correctly process future packets from the flow, and an IDS needs metadata from prior

packets to detect attacks that span multiple packets or flows. We suppress all packet and

log output at dstInst during reprocessing, because srcInst has already produced such output.

The srcInst marks packets with a “do-not-output” flag before sending them to the controller

(or dstInst if conducting a P2P transfer) to inform dstInst that output should be suppressed.

Packet reprocessing still requires copies of packets to be buffered at the controller (or

dstInst), but this buffering is no longer part of the critical path, because srcInst processes

the original packet and produces the corresponding output. In particular, for every packet

matching filter that arrives at srcInst during a loss-free move, srcInst: (1) sends the packet

to the controller (or dstInst), and (2) processes the packet normally. This means packet

processing is only delayed by the time it takes a middlebox to copy the packet.10 Furthermore,

given that dstInst reprocesses packets solely to obtain state updates, there is no need to

reprocess a packet if no state is updated when the packet is processed at srcInst.11 This

eliminates the need to raise an event for/buffer such packets, thereby reducing resource

demands at the controller (and dstInst).

In addition to reducing latency overhead and resource demands, packet reprocessing allows

OpenNF to guarantee a move is loss-free or order-preserving, even when the controller’s

(or dstInst’s) packet buffer overflows. Buffer overflow normally causes packets, and their

corresponding state updates to be lost. However, with packet reprocessing, the middlebox

state on srcInst is always up-to-date, because packets matching filter that arrive at srcInst
10We assume middleboxes (have been modified to) lock the appropriate state objects while a packet is

being processed in order to prevent a partially modified object from being exported.
11Or the updated state is not critical for avoiding a functional failure: e.g., only statistics are updated.
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during the move are always processed by srcInst. Thus, we can always re-export state from

srcInst, and import the updated state on dstInst, without worrying about processing buffered,

or dropped, packets at dstInst.

Note that maintaining output equivalence in the presence of packet reprocessing requires

a middlebox’s execution to be output deterministic [34]. In other words, if a middlebox starts

from some state Si and processes a sequence of packets Pi+1...Pi+k, it is essential that the

resulting output is always Oi+1...Oi+k. Without this property, dstInst could end up producing

different output (O ′i+1..O ′i+k) than srcInst after reprocessing the packets, and the behavior of

dstInst going forward could differ from the behavior that would have resulted if only dstInst

had processed the packets or the move operation had never occurred. Output determinism is

a weaker property than value determinism—which is enforced by other frameworks designed

to make middleboxes highly-available [127]—and correspondingly requires fewer middlebox

modifications to enforce.

Additional Optimizations. It may be possible to further reduce state transfer and packet

buffering time through the use of additional optimizations. For example, we could employ

ideas used in live virtual machine migration [49] and send multiple rounds of state deltas

before stopping packet processing to send a final delta; the middlebox instrumentation

required to track state deltas could be automated using tools like StateAlyzr [89]. However,

we choose not to employ such optimizations in OpenNF to balance the trade-off between

performance and the extent of middlebox modifications required.

4.5 Controller API: Copy and Share Operations

While OpenNF’s move operation enables state to be transferred between middlebox instances,

OpenNF’s copy and share operations address applications’ need for the same state to be

readable and/or updateable at multiple middlebox instances and, potentially, for updates

made at one instance to be reflected elsewhere. For example, to avoid functional failures due

to infrastructure faults, a backup middlebox instance needs to keep an updated copy of all
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per-/multi-/all-flows state (Section 4.1). Similarly, a control application that distributes an

end-host’s flows among multiple IDS instances to avoid a performance failure needs updates

to the host connection counter at one instance to be reflected at the other instances in order

to effectively detect port scans (and avoid a functional failure).

OpenNF’s copy operation can be used when state consistency is not required or eventual

consistency is desired, while share can be used when strong or strict consistency is desired.

Note that eventual consistency is akin to extending our loss-free property to multiple copies

of state, while strict consistency is akin to extending both our loss-free and order-preserving

properties to multiple middlebox instances.

Copy operation. OpenNF’s copy operation clones state from one middlebox instance

(srcInst) to another (dstInst). Its syntax is:

copy(srcInst,dstInst,filter,scope)

The filter argument specifies the set of flows whose state to copy, while the scope argument

specifies which class(es) of state (per-flow, multi-flow, and/or all-flows) to copy.

The copy operation is implemented using the get and put calls from the middlebox API

(Section 4.3). No change in forwarding rules at gw occurs as part of copy, because state is

not deleted from srcInst; srcInst can continue processing traffic and updating its copy of

state. It is up to control applications to separately initiate a change in forwarding at gw if

the situation warrants (e.g., by directly interacting with the gw or calling move for some other

class of state).

Eventual consistency can be achieved by occasionally re-copying the same set of state.

As described in Section 4.3, a middlebox will automatically replace or combine the new and

existing copies when putPerflow, putMultiflow, and putAllflows are called. Since there are many

possible ways to decide when state should be re-copied—based on time, middlebox output,

updates to middlebox state, or other external factors—we leave it to control applications to

issue subsequent copy calls. As a convenience, we provide a function for control applications

to become aware of state updates:
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void notify(filter,inst,enable,callback)

When invoked with enable set to true, the controller calls enableEvents(filter,process-normally)

on middlebox instance inst, otherwise it calls disableEvents(filter) on inst. Events are

asynchronous, so notifying the controller has a minimal impact on inst’s performance. For

each event the controller receives, it invokes the provided callback function in the control

application.

Share operation. Strong and strict consistency are more difficult to achieve, because state

reads and updates must occur at each middlebox instance in the same global order. For

strict consistency this global order must match the order in which packets are received by

gw. For strong consistency the global order may differ from the order in which packets were

received by gw, but updates for packets received by a specific middlebox instance must occur

in the global order in the order the instance received the packets.

Both cases require synchronizing reads/updates across all middlebox instances (list<inst>)

that are using a given piece of state. OpenNF’s share operation provides this:

void share(list<inst>,filter,scope,consistency)

The filter and scope arguments are the same as above, while consistency is set to strong or

strict.

Events can again be used to keep state strongly consistent. The controller calls enable-

Events(filter,do-not-process) on each instance, followed by a sequence of get and put calls

to initially synchronize their state. When events arrive at the controller, they are placed in

a FIFO queue labeled with the flowid for the flow group to which they pertain; flows are

grouped based on the coarsest granularity of state being shared (e.g., per-host or per-prefix).

For each queue, one event at a time is dequeued, and the packet it contains is marked

with a “force-processing” flag and sent to the originating middlebox instance. The middlebox

instance processes the packet and raises an event, which signals to the controller that all

state reads/updates at the middlebox are complete. The controller then calls getMultiflow
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(or getPerflow, getAllflows) on the originating middlebox instance, followed by putMultiflow

(or putPerflow, putAllflows) on all other instances in list<inst>. Then, the next event is

dequeued and the process repeated.

Since events from different middleboxes may arrive at the controller in a different order

than packets were received by gw, we require a slightly different approach for strict consistency.

The controller must receive packets directly from gw to know the global order in which packets

should be processed. We therefore update all relevant forwarding entries in gw—i.e., entries

that both cover a portion of the flow space covered by filter and forward to an instance in

list<inst>—to forward to the controller instead. We then employ the same methodology as

above, except we invoke enableEvents with action set to process-normally and queue packets

received from gw rather than receiving packets via events.

We adopt the above approach of copying state after the processing of each packet to

minimize the changes required to middleboxes. In particular, we can reuse the same middlebox

API functions (Section 4.3) used for move and copy operations. However, this approach comes

at a significant performance cost (Section 4.8.1). Thus, control applications should use share

judiciously. Applications should also consider which multi-/all-flows state is required for

accurate packet processing, and, generally, invoke copy or share operations on this state

prior to moving per-flow state. More efficient state sharing mechanisms, such as a replicated

state machine based on ABCAST [44] or CBCAST [45], can be implemented with additional

middlebox modifications.

4.6 Control Applications

Using OpenNF, we have written control applications that achieve the performance and high

availability goals described in Section 4.1. We expect that middlebox vendors, or someone

familiar with a middlebox’s high-level operation, will normally write such applications. We

use the Bro IDS [112] in both the applications we present, but different middleboxes and goals

place different requirements on both the granularities of state operations and the guarantees
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1 standbys ← {}
2 initStandby(primaryInst, stbyInst, filter)
3 standbys[primaryInst].put(filter, stbyInst)
4 filter .nw_proto ← TCP
5 filter .tcp_flags ← SYN | RST
6 notify(filter, primaryInst, true, updateStandby)
7 filter .tcp_flags ← *
8 filter .tcp_dst ← 80
9 filter .nw_src ← 10.0.0.0/8

10 notify(filter, primaryInst, true, updateStandby)
11 updateStandby (event)
12 primaryInst ← event.src
13 filter ← extractFlowId(event.pkt)
14 stbyInst ← standbys[primaryInst][filter ]
15 copy(primaryInst, stbyInst, filter, PER)

Figure 4.7: Application for maintaining high availability

needed. Despite these differences, control applications are relatively simple to implement.

We describe them below.

High availability. The first application (Figure 4.7) maintains a collection of hot standbys

for each Bro IDS instance with an eventually consistent copy of all per-flow and multi-flow

state. Note that each standby is responsible for a subset of the primary instance’s traffic, and

each standby is also the primary instance for a different set of traffic, similar to the setup in

Pico Replication [120]. Such a setup is more efficient than having a dedicated hot standby,

as done by FTMB [127].

The initStandby function is invoked to initialize a standby (stbyInst) for a subset of the

traffic (filter) assigned to an IDS instance (primaryInst). It notes which primaryInst and traffic

subset the standby is associated with and requests notifications from primaryInst for packets

in filter whose corresponding state updates are important for scan detection and browser

identification—TCP SYN, SYN+ACK, and RST packets and HTTP packets sent from a local

client to an external server. The copy is made eventually consistent when these key packets

are processed, rather than recopying state for every packet. In particular, events are raised

by primaryInst for these packets and the controller invokes the updateStandby function. This
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1 movePrefix(prefix, oldInst, newInst)
2 copy(oldInst, newInst, {nw_src: prefix}, MULTI)
3 move(oldInst, newInst, {nw_src: prefix}, PER, LOSSFREE)
4 while true do
5 sleep(60 )
6 copy(oldInst, newInst, {nw_src: prefix}, MULTI)
7 copy(newInst, oldInst, {nw_src: prefix}, MULTI)

Figure 4.8: Application for maintaining predictable performance

function copies the appropriate per-flow state from primaryInst to the corresponding stbyInst.

When an infrastructure fault occurs, the forwarding rules in the gateway are updated to

forward the appropriate prefixes to stbyInst instead of primaryInst (code not shown).

Predictable performance. The second application (Figure 4.8) monitors the CPU load

on the Bro IDS instances and calculates a new distribution of local network prefixes when

load becomes imbalanced. If a subnet is assigned to a different IDS instance, the movePrefix

function is invoked. This function calls copy to clone the multi-flow state associated with

scan detection, followed by move to perform a loss-free transfer of the per-flow state for all

active flows in the subnet.

We copy, rather than move, multi-flow state because the counters for port scan detection

are maintained on the basis of 〈external IP, destination port〉 pairs, and connections may

exist between a single external host and hosts in multiple local subnets. An order-preserving

move is unnecessary because re-ordering would only potentially result in the scan detector

failing to count some connection attempts, and, in this application, we are willing to tolerate

moderate delay in scan detection. However, to avoid missing scans completely, we maintain

eventual consistency of multi-flow state by invoking copy in both directions every 60 seconds.

4.7 Implementation

Our OpenNF prototype consists of: (1) a controller that implements our move, copy, and share

operations (Sections 4.4 and 4.5); (2) a shared library that middleboxes use for communicating
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with the controller, conducting P2P transfers, and handling packets from events; and (3)

several modified middleboxes—Bro, PRADS, and iptables—that implement our middlebox

API (Section 4.3).

Controller. The OpenNF controller is written as a module atop Floodlight [9] (≈4.7K lines

of Java code). The controller listens for connections from middleboxes and launches two

threads—for handling state operations and events—for each middlebox. The controller and

middleboxes exchange JSON messages to invoke middlebox API functions, provide function

results, and send events. We use an OpenFlow [108] switch as the gateway (gw). The interface

with control applications is event-driven.

Shared library. The shared library (≈2.6K lines of C code) is used by middleboxes for

communicating with the controller, conducting P2P transfers, and handling packets from

events. The shared library implements: wrappers for the state export/import API calls

(Section 4.3), which call middlebox-specific export/import functions (described below); the

enable/disableEvents API calls, along with the filtering and buffer management mechanisms

they require; and transfer and accept API calls for P2P transfers. Like the controller, the

shared library launches two threads for handling operations and events.

To inject packets (from events forwarded by the controller or a peer middlebox) into the

middlebox’s packet input stream, we use virtual Ethernet (veth) interfaces and bridging

(Figure 4.9). When a middlebox starts, the shared library creates a bridge and two veth

pairs—vethP2Pin/vethP2Pbr and vethNFbr/vethNFin. The interfaces in a veth pair are

virtually wired together, such that a packet sent on one veth interface is received by the other

veth interface. We add vethP2Pbr, vethNFbr, and ethIn to the bridge. We then configure the

middlebox to read packets from vethNFin. When a packet arrives on ethIn, it passes through

the bridge to vethNFbr, causing it to be received by vethNFin and read by the middlebox

(solid red path in Figure 4.9). When a packet arrives on a controller or peer connection—or

a packet that previously arrived on the connection is released from a buffer—we send the

packet on vethP2Pin; the packet is received by vethP2Pbr, sent across the bridge to vethNFbr,
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Figure 4.9: Setup for injecting packets from events into dstInst’s input stream: solid red path
is taken by normal packets, dashed blue path is taken by packets that require reprocessing

received by vethNFin, and read by the middlebox (dashed blue path).

Middleboxes. We implemented middlebox-specific handlers for each middlebox API func-

tion. We discuss the middlebox-specific modifications below, and evaluate the extent of these

modifications in Section 4.8.3.

Bro IDS [112] performs a variety of security analyses defined by policy scripts. The

get/putPerflow handlers for Bro lookup (using linear search) and insert Connection objects

into internal hash tables for TCP, UDP, and ICMP connections. The key challenge is

serializing these Connection objects and the many other objects (>100 classes) they refer

to; we wrote custom serialization functions for each of these objects using Boost [5]. We

also added a moved flag to some of these classes—to prevent Bro from logging errors during

delPerflow—and a mutex to the Connection class—to prevent Bro from modifying the objects

associated with a flow while they are being serialized. Lastly, we added library calls to Bro’s

main packet processing loop to raise events when a received packet matches a filter on which

events are enabled.

PRADS asset monitor [23] identifies and logs basic information about active hosts and

the services they are running. The get/putPerflow and get/putMultiflow handlers for PRADS

lookup and insert connection and asset structures, which store flow meta data and end host

operating system and service details, respectively, in the appropriate hash tables. If an asset

object provided in a putMultiflow call is associated with the same end host as an asset object

already in the hash table, then the handler merges the contents of the two objects. The

get/putAllflows handlers copy and merge, respectively, a global statistics structure.

Iptables [13] is a firewall and network address translator integrated into the Linux kernel.
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The kernel tracks the 5-tuple, TCP state, security marks, etc. for all active flows; this state is

read/written by iptables. We wrote an agent that uses libnetfilter_conntrack [16] to capture

and insert this state when get/putPerflow are invoked. There is no multi-flow or all-flows

state in iptables.

4.8 Evaluation

Our evaluation of OpenNF answers the following key questions:

• Can state be moved, copied, and shared efficiently even when guarantees on state or

state operations are requested by applications? To what extent do our optimizations

improve efficiency?

• What benefits do control applications see from the ability to move, copy, or share state

with varying guarantees?

• How efficiently can middleboxes export and import state, and do these operations

impact middlebox performance? How many modifications must be made to middleboxes

to support the middlebox API?

• How is OpenNF’s efficiency impacted by the scale of a middlebox deployment? To

what extent do our optimizations reduce resource demands at the controller?

• To what extent do existing middlebox control planes hinder the ability to satisfy a

combination of high-level objectives?

The testbed we use for our evaluation consists of an OpenFlow-enabled HP ProCurve

6600 switch and four mid-range servers (Quad-core Intel Xeon 2.8GHz, 8GB, 2 x 1Gbps

NICs) that run the OpenNF controller and modified middleboxes and generate traffic. We

use replayed university-to-cloud-data-center network traffic traces [78], along with synthetic

workloads.
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Figure 4.10: Efficiency of move: with no guarantees (NG), loss-free (LF), and loss-free
and order-preserving (LF+OP) with and without pipelining (PL) and early-release (ER)
optimizations; traffic rate is 2500 packets/sec; times are averaged over 5 runs and the error
bars show 95% confidence intervals

4.8.1 Efficiency of move, copy, and share operations

We first evaluate the efficiency of our move, copy, and share operations when guarantees are

requested on state or state operations. We use two PRADS asset monitor instances (PRADS1

and PRADS2) and replay our university-to-cloud-data-center trace at 2500 packets/second.

We initially send all traffic to PRADS1. Once it has created state for 500 flows (≈80K

packets have been processed), we move all flows and their per-flow state, or copy all multi-flow

state, to PRADS2. To evaluate sharing with strong consistency, we instead call share (for

all multi-flow state) at the beginning of the experiment, and then replay our traffic trace.

During these operations, we measure the number of dropped packets, the added latency for

packets contained in events from PRADS1 or buffered at PRADS2, and the total operation

time (for move and copy only). Although the specific values for these metrics vary based on

the middlebox, scope, filter granularity (i.e., number of flows/states affected), and packet
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Figure 4.11: Improvements in move time with P2P transfers

rate, the high-level takeaways still apply.

Move operation. Figure 4.10 shows our results for move with varying guarantees and

optimizations.

A move without any guarantees or optimizations (NG) completes in 193ms. This time

is primarily dictated by the time required for the middlebox to export (89ms) and import

(54ms) state; we evaluate middlebox operations in detail in Section 4.8.3. The remaining

50ms is spent processing control messages from the middleboxes and updating forwarding at

gw.

Our pipelining optimization (Section 4.4.3) can reduce the total time for the move

operation (NG PL) to 134ms by exporting and importing state (mostly) in parallel. The time

can be reduced even further using a P2P transfer. Figure 4.11 shows the time to complete a

move operation for varying numbers of flows with and without P2P transfer; each data point

is averaged across three iterations. We observe that P2P transfer reduces the average move

time by at least 31%, and up to 70%, depending on the amount of state transferred.

However, even these faster versions of move come at a cost: up to 225 packets are dropped!

Figure 4.12a shows how the number of drops changes as a function of the packet rate and the

number of flows whose state is moved. We observe a linear increase in the number of drops

as the packet rate increases, because more packets will arrive in the time window between

the start of move and the routing update taking effect.

A loss-free move (LF PL in Figure 4.10) avoids drops by raising events. However, the



111

 0

 500

 1000

 1500

 0  2.5  5  7.5  10

#
 D

ro
p
p
e
d
 P

a
c
k
e
ts

Packet Rate (1000s of pkts/s)

250 flows
500 flows

1000 flows

(a) Packet drops during a pipelined move with
no guarantees

 0

 200

 400

 600

 800

 0  2.5  5  7.5  10

M
o

v
e

 T
im

e
 (

m
s
)

Packet Rate (1000s of pkts/s)

250 flows
500 flows

1000 flows

(b) Total time for a pipelined loss-free move

Figure 4.12: Impact of packet rate and number of per-flows states on pipelined move with
and without a loss-free guarantee

410 packets contained in events may each incur up to 185ms of additional latency. (Packets

processed by PRADS1 before the move or PRADS2 after the move do not incur additional

latency.) Additionally, the total time for the move operation increases by 62% (84ms).

Figure 4.12b shows how the total move time scales with the number of flows affected and the

packet rate. We observe that the total time for a pipelined loss-free move increases more

substantially at higher packet rates. This is because more events are raised, and the rate at

which the packets contained in these events can be sent to PRADS2 becomes limited by the

event rate our controller can sustain. The average and maximum per-packet latency increase

for packets contained in events also grows with packet rate for the same reason: e.g., the

average (maximum) per-packet latency increase is 465ms (573ms) for a pipelined loss-free

move of 500 flows at a packet rate of 10K packets/sec (graph not shown).

Our early-release optimization (Section 4.4.3) can decrease the additional packet latency.

At a rate of 2500 packets/sec, the average per-packet latency overhead for the 326 packets

contained in events drops to 50ms (LF PL+ER in Figure 4.10b), a 63% decrease compared

to LF PL; at 10K packets/sec this overhead drops to 201ms, a 99% decrease.

In addition to added packet latency, a loss-free move also introduces re-ordering: 657

packets (335 from events + 322 received by PRADS2 while packets from events are still

arriving) are processed out-of-order with a pipelined loss-free move. However, this re-ordering
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can be eliminated with an order-preserving move.

A loss-free and order-preserving move with pipelining and early-release optimizations

(LF+OP PL+ER in Figure 4.10) takes 96% (208ms) longer than a fully optimized loss-free-

only move (LF PL+ER) due to the additional steps involved. Furthermore, packets buffered

at PRADS2 (100 packets on average), while waiting for all packets originally sent to PRADS1

to arrive and be processed, each incur up to 96ms of additional latency (7% more than LF

PL+ER). Thus, control applications can benefit from choosing an alternative version of move

if they do not require both guarantees.

Copy and share operations. A pipelined copy takes 111ms, with no packet drops or added

packet latency, as there is no race between a routing update and copying state. In contrast, a

share operation that keeps multi-flow state strongly consistent adds at least 13ms of latency

to every packet, with more latency incurred when a packet must wait for the processing of

an earlier packet to complete. This latency stems from the need to call getMultiflow and

putMultiflow on PRADS1 and PRADS2, respectively, after every packet is processed, because

our events only provide hints as to whether state changed but do not inform us if the state

update is significant. For example, every packet processed by the PRADS asset monitor

causes an update to the last seen timestamp in the multi-flow state object for the source

host, but only a handful of special packets (e.g., TCP handshake and HTTP request packets)

result in interesting updates to the object. However, adding more PRADS asset monitor

instances (we experimented with up to 6 instances) does not increase the latency because

putMultiflow calls can be issued in parallel. In general, it is difficult to efficiently support

strong consistency of state without more intrinsic support from a middlebox, e.g., information

on the significance of a state update.

Move operation with packet reprocessing. We now evaluate the benefits of packet

reprocessing using the Bro IDS, instead of PRADS asset monitor, because an IDS’s packet

processing is more advanced and places more stress on the system. We conduct a loss-free

move affecting 800 active flows while replaying traffic at varying rates—up to 52K packets
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Figure 4.13: Improvements in latency overhead

per second (0.4Gbps). We measure per-packet latency as the time elapsed between a packet

arriving at gw and a packet begin output by an IDS instance.12 We compare the latency of:

(1) packets processed normally by srcInst prior to the move operation, (2) packets in filter

that are both processed and output by srcInst and reprocessed by dstInst, and (3) packets in

filter that arrive during the move but are only processed by dstInst. The last case captures

the latency overhead without the optimization.

Figure 4.13 shows the average packet latency in each of the three cases—labeled normal,

reprocessed, and redirected, respectively. First, we observe that the latency for normal packets

plateaus, and the latency for redirect packets dips, when the traffic rate is above 36K pps

(0.3Gbps). This is the point where we exceed the packet processing capacity of a single IDS

instance. More importantly, below this rate, we observe that packet reprocessing offers an

81% to 94% reduction in packet latency overhead compared to OpenNF’s original design.

However, packets in filter arriving during a move operation still incur an ≈2x inflation in

latency compared to packets processed prior to the move. This overhead stems from the

middlebox using some of its resources to export state.

4.8.2 Importance of guarantees

We next evaluate the importance of the guarantees offered by OpenNF. Our methodology

is similar to our experiments above, except we use the Bro IDS with a malware detection
12We modified the Bro IDS to output packets after they are processed.
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Number of alerts
Alert Baseline NG LF LF+OP
Incorrect File Type 26 25 24 26
Malware Hash Registry Match 31 28 27 31
Total 57 53 51 57

Table 4.2: Effects of different guarantees

script [6], and we replay a trace of malware traffic [17] at 1000 packets/second for 40 seconds.

This represents the small fraction of malicious traffic we expect might be present in a data

center’s overall traffic. We issue a move operation (with the pipelining optimization) after 15

seconds.

We compare the alerts raised by the Bro IDS when no move is performed (baseline) versus

when a no guarantee (NG), loss-free (LF), or loss-free plus order-preserving (LF+OP) move

is performed. Table 4.2 shows the type and number of alerts raised under each scenario.

We observe that 7% and 10% of the alerts occurring during our 40 second experiment are

missed with a no guarantee or loss-free move, respectively. More alerts are missed with

loss-free because re-ordering is introduced. In contrast, no alerts are missing with a loss-free

plus order-preserving move. Depending on the frequency of load redistribution, the overall

fraction of alerts missed may be higher or lower. Regardless, our experiment illustrates that

the guarantees offered by OpenNF are essential to accurately monitor network traffic when

packet processing is dynamically redistributed; this is especially true for middleboxes where

accuracy is paramount—e.g., middleboxes that measure traffic volumes for billing purposes.

4.8.3 Middlebox API

The time required to export and import state at middleboxes directly impacts how quickly

a move or copy operation completes and how much additional packet latency is incurred

when share is used. We thus evaluate the efficiency of OpenNF’s middlebox operations

(Section 4.3) for the middleboxes we modified. We also examine how much code was added

to the middleboxes to support these operations.
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Figure 4.14: Efficiency of state export and import

API call processing. Figures 4.14a and 4.14b show the time required to complete a

getPerflow and putPerflow operation, respectively, as a function of the number of flows whose

state is exported/imported. We observe a linear increase in the execution time of getPerflow

and putPerflow as the number of per-flow state chunks increases. The time required to

(de)serialize each chunk of state and send it to (receive it from) the controller accounts for

the majority of the execution time. Additionally, we observe that putPerflow completes at

least 2x faster than getPerflow; this is due to deserialization being faster than serialization.

Overall, the processing time is highest for Bro because of the size and complexity of the

per-flow state. The results for multi-flow state are qualitatively similar.

We also evaluate how middlebox performance is impacted by the execution of middlebox

operations. In particular, we measure average per-packet processing latency (including

queuing time) during normal middlebox operation and when a middlebox is executing a

getPerflow call. Among the middleboxes, the PRADS asset monitor has the largest relative

increase—5.8% (0.120ms vs. 0.127ms), while the Bro IDS has the largest absolute increase—

0.12ms (6.93ms vs. 7.06ms). In both cases, the impact is minimal, implying that middlebox

operations do not significantly degrade middlebox performance.

Middlebox changes. To quantify the middlebox modifications required to support our

middlebox API, we counted the lines of code (LOC) that we added to each middlebox

(Table 4.3). The counts do not include the shared library used with each middlebox for
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LOC added for Total Increase
Middlebox serialization LOC added in code
Bro IDS 2.9K 3.3K 4.0%
PRADS asset monitor 0.1K 1.0K 9.8%
iptables 0.6K 1.0K n/a

Table 4.3: Additional code to implement OpenNF’s middlebox API

communication with the controller: ≈2.6K LOC. At most, there is a 9.8% increase in LOC13,

most of which is state serialization code that could be automatically generated [7]. Thus, the

middlebox changes required to support OpenNF are minimal.

4.8.4 Controller scalability

Since the controller oversees all move, copy, and share operations, its ability to scale is crucial.

We thus measure the performance impact of conducting simultaneous operations across many

pairs of middleboxes.

To isolate the controller from the performance of individual middleboxes, we use “dummy”

middleboxes that replay traces of past state in response to getPerflow, simply consume state

for putPerflow, and infinitely generate events during the lifetime of the experiment. The

traces we use are derived from actual state and events sent by PRADS asset monitor while

processing our cloud data center traffic trace. PRADS asset monitor state objects are small

(202 bytes on average), so a move operation for this middlebox imposes the lowest load on

the controller and thus represents the best case for controller scalability.

Figure 4.15a shows the average time per loss-free move operation as a function of the

number of simultaneous operations. The average time per operation increases linearly with

both the number of simultaneous operations and the number of flows affected.

We profiled our controller using HPROF [12] and found that during a move operation

threads are busy reading from sockets most of the time. This implies that the volume of data

the controller must handle is the primary bottleneck. One way to overcome this bottleneck is
13We do not calculate an increase for iptables because we wrote a user-level tool to export/import state

rather than modifying the Linux kernel.
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Figure 4.15: Performance of concurrent loss-free move operations

to optimize the size of state transfers using compression. We ran a simple experiment and

observed that, for a move operation for 500 flows, state can be compressed by 38%, reducing

execution latency from 110ms to 70ms.

Our P2P transfer optimization (Section 4.4.3) can also significantly reduce controller

overhead and improve scalability. Figure 4.15b shows the average time per operation when

between 1 and 20 move operations occur simultaneously. We observe the transfer time per

move is near constant with P2P transfers, regardless of the number of flows affected by each

move operation. In contrast, without P2P transfers, the state transfer time steadily increases

as the number of simultaneously operations increases.

4.8.5 Comparison with alternative approaches

Lastly, we compare the ability to maintain predictable middlebox performance using OpenNF

versus alternative approaches [8, 39, 70, 84, 116]. We start with one Bro IDS instance (Bro1)

and replay our cloud data center traffic trace at a rate of 2500 packets/sec for 2 minutes. We

then double the traffic rate, add a second Bro IDS instance (Bro2), and move all HTTP flows

to Bro2 (other flows remain at Bro1); 2 minutes later we scale back down to one instance.

We use Bro because its state is the most complex among the middleboxes we modified

VM replication. This approach takes a snapshot of the current state in an existing

middlebox instance (Bro1) and copies it to a new instance (Bro2) as is. Since, VM replication
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does not do fine-grained state migration, we expect it to have unneeded states in all instances.

We quantify unneeded state by comparing: a snapshot of a VM running the Bro IDS that

has not yet received any traffic (base), a snapshot taken at the instant of scale up (full),

and snapshots of VMs that have only received either HTTP or other traffic prior to scale

up (HTTP and other). Base and full differed by 22MB. HTTP and other differed from base

by 19MB and 4MB, respectively; these numbers indicate the the volume of state the IDS

had at the time of snapshot for (active and inactive) HTTP and other flows, respectively.

Consequently, these numbers represent the overhead imposed by the unneeded state at the

two Bro IDS instances. In contrast, the amount of state moved by OpenNF (i.e., per-flow

and multi-flow state for all active HTTP flows) was 8.1MB. More crucial are the correctness

implications of unneeded state: we found 3173 and 716 incorrect entries in conn.log at the

two Bro IDS instances, because the migrated HTTP (other) flows terminate abruptly at Bro1

(Bro2).

Scaling without re-balancing active flows. Frameworks that steer only new flows to

new scaled out middlebox instances leave existing flows to be handled by the same middlebox

instance [70]. Thus, Bro1 continues to remain bottlenecked until some of the flows traversing

it complete. Likewise, in the case of scale in, middleboxes are unnecessarily “held up” as

long as flows are active. We observe that ≈9% of the HTTP flows in our cloud trace were

longer than 25 minutes; this requires us to wait for more than 25 minutes before we can

safely terminate Bro2, otherwise we may miss detecting some attacks.

4.9 Related Work

Prevalence of middlebox failures. Several measurement studies have highlighted the

potential for [61] and prevalence of [60, 75, 113] middlebox availability and performance

problems. As discussed earlier, common causes of these problems include: connectivity errors,

hardware and software faults, overload, and misconfiguration [113].
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Trend towards software middleboxes. In the past few years, network operators and

researchers have begun to advocate for the deployment of software middleboxes in place of

hardware appliances [20, 54, 124]. The biggest proponents of software middleboxes have been

Internet and telecom service providers, through a movement known as network functions

virtualization (NFV) [20]. However, there has also been a push for using software middleboxes

in the data center [54], as well as replacing hardware middleboxes in enterprise networks

with software middleboxes hosted to a cloud data center [128].

Virtualization and orchestration. Several virtualization frameworks have been designed

specifically for software middleboxes [36, 107, 124] to help address performance and resource

efficiency issues that arise with this deployment model. In particular, they speed-up middlebox

instance launch times [107] and reduce redundant operations (e.g., packet parsing) by

consolidating several types of middlebox instances on the same generic compute node [36, 124].

Other researchers have argued that middleboxes should be placed in every hypervisor within

a data center [54]; this model improves efficiency by avoiding the need for dedicated compute

nodes to run middleboxes and improves performance by reducing the need to traverse extra

hops in the data center when routing traffic between end hosts.

A complementary set of frameworks are designed for orchestrating the deployment of

middlebox instances [22, 70, 111, 116]. These frameworks automatically monitor for overload

and failures and, when necessary, launch additional middlebox instances at optimal locations

within a data center. The frameworks also handle the interconnection of middlebox instances

and the distribution of traffic between them. The challenge of interconnecting different types

of middlebox instances in a sequence, commonly known as service chaining [119], has also

been addressed independently of managing the lifecycle of middlebox instances [63, 84, 118].

The aforementioned virtualization and orchestration efforts help make the “one-big-

middlebox” abstraction possible, but they leave gaps that are at least partially filled by

OpenNF. In particular, some orchestration frameworks [70, 111] (re)distribute traffic in a

way that maintains affinity—i.e., a flow is routed to the same middlebox instance throughout
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its lifetime [144]—thus avoiding the need for explicit management of middlebox state. This

approach has also been commonly used when designing scalable intrusion detection/prevention

systems [123, 142, 148]. Other middlebox orchestration frameworks [116] redistribute traffic

between middlebox instances without considering the implications for middlebox state. The

latter will lead to functional failures, while the former may not address overload fast enough

to avoid performance failures. Thus, there is a need for OpenNF’s explicit state management.

Virtual machine and process replication. Generic solutions for transferring or replicat-

ing the state of virtualized applications—e.g., virtual machine migration [39, 49], virtual

machine replication [52, 56], and process migration [8, 57, 103, 109]—only allow middlebox

instances to be moved or cloned in their entirety. While cloning could be used as a way

to transfer state to a new middlebox instance, the additional unneeded state included in

a clone can cause undesirable middlebox behavior: e.g., an IDS may generate false alerts

(Section 4.8.5). Such an approach is also unsuitable when transferring state prior to scale

down, because it does not allow state from multiple middlebox instances to be consolidated.

Furthermore, the inability to replicate only part of a virtualized middlebox’s state limits the

high availability strategies that can be employed using existing virtual machine replication

solutions [52, 56]. In particular, we must maintain a dedicated standby instance for each

middlebox instance, rather than making several existing middlebox instances—that are also

processing other traffic—each responsible for a subset of a middlebox instance’s traffic in the

event of an infrastructure fault [120].

Understanding middlebox state. Finer-grained management of middlebox state requires

an understanding of: (1) what types of state middleboxes maintain, (2) how the state is

organized, and (3) how the state is used for middlebox operations. We explored the first two

questions in Section 4.3; designers of frameworks similar to OpenNF [86, 120, 121] (described

in detail below) have done the same. Efforts to build abstract models of middleboxes [83]

or parallelize middleboxes [48] have explored the first and last of these questions through

manual or programmatic inspection of specific middleboxes. Finally, StateAlyzr [89] explores
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all three questions through programmatic analysis of arbitrary middleboxes. These works

have informed, and can help us further refine, the design of OpenNF’s middlebox APIs

(Section 4.3); StateAlyzr in particular can help automate the task of modifying middleboxes

to support our APIs.

Distributed state management. Frameworks designed for managing the state of generic

distributed applications provide one possible avenue for manging middlebox state. One

approach is to place state in a key/value store (e.g., Dynamo [53], FaRM [59], RAMCloud [110],

etc.) rather than having state reside on application servers. Such an approach has been

employed by StatelessNF [86]. However, modifying an existing middlebox to accommodate this

approach requires changing all state accesses/updates in the middlebox code to communicate

with the remove data store. Furthermore, for middleboxes which access and update state

frequently—e.g., an IDS which updates state on every packet [112]—the latency penalty of

communicating with the key/value store may be prohibitively expensive, even if key/value

store accesses occur over low-latency channels (e.g., remote-direct memory access [59, 110]).

Another approach is to broadcast updates to all instances of a middlebox such that

their view of state remains in sync (e.g., using CBCAST [45] or ABCAST [44], Apache

Kafka [2], etc.). However, this approach also requires substantial modifications to middlebox

code. Additionally, receiving all updates (in a consistent order) may not be sufficient to

guarantee middlebox correctness: e.g., a state update made by one IDS instance may need to

be reflected at another IDS instance before the latter processes a packet from another flow,

otherwise the ordering of events perceived by the IDS may not correctly match an attack

signature [48]. Nonetheless, these approaches may be useful to implementing more efficient

state sharing (Section 4.5).

Middlebox state management. Given the complexity and performance issues with

applying existing distributed state management approaches to middleboxes, several recent

systems have been designed explicitly for handling middlebox state. Split/Merge [121] and

Pico Replication [120] provide a shared library that middleboxes use to create, access, and
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modify state through a pre-defined API. The API uses nondescript keys for multi-flow state,

making it difficult to know the exact states to move and copy when flows are rerouted.

Furthermore, the API only allows one state allocation per flow, requiring some internal

middlebox state and packet processing logic to be significantly restructured. In contrast,

OpenNF does not change how middlebox state is organized and allocated (Section 4.3).

In Split/Merge [121], an orchestrator is responsible for coordinating middlebox scaling

and load balancing by invoking a simple migrate operation that reroutes a group of flows and

moves corresponding middlebox state. Unfortunately, the migrate operation can cause state

updates to be lost or reordered, because packets arriving at a middlebox instance after migrate

is initiated are dropped, and a race exists between updating network forwarding and resuming

the flow of traffic (which is halted when migrate starts). OpenNF carefully addresses such

race conditions and guarantees state transfers are loss-free and order-preserving (Section 4.4).

In Pico Replication [120] and FTMB [127], all recently updated middlebox state is cloned

to a backup instance at fixed intervals to protect against infrastructure faults. To ensure the

backup remains consistent with the current state of network flows, these frameworks either

buffer output until the state has been successfully replicated [120] or keep a log of input

packets such that the replica can be brought “up to speed”. The former introduces significant

latency overhead, making it impractical for low-latency data center networks. The latter is

similar to OpenNF’s packet reprocessing optimization (Section 4.4.3), with extra emphasis

on ensuring packet processing is deterministic; thus, it complements OpenNF.

4.10 Summary

This chapter introduced a middlebox state management framework (OpenNF) that facilitates

the implementation of a “one-big-middlebox” abstraction backed by a collection of software

middlebox instances. Such a deployment model reduces or eliminates middlebox-related

connectivity, configuration, and infrastructure problems, thereby helping data center network

operators avoid middlebox-induced functional and performance failures. OpenNF ensures
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middleboxes have the state they need to correctly process the packets they receive. Moreover,

OpenNF ensures that updates to middlebox state are not lost or reordered and copies of

state are kept eventually, strongly, or strictly consistent, so as to avoid causing a functional

failure when middlebox state is transferred or replicated.

We showed how to achieve the aforementioned guarantees using two novel techniques:

(1) an event abstraction that allows the OpenNF controller to closely observe updates to

middlebox state, or to prevent updates but know what update was intended, and (2) tracer

packets that allow the controller to determine when all of a flow’s outstanding packets have

arrived at a middlebox instance. We also showed how to reduce the performance and resource

overhead of these guarantees using several optimizations, including fine-grained buffering,

peer-to-peer transfers, and packet reprocessing. Our thorough evaluation of OpenNF using

traces of traffic exchanged with a public cloud data center showed that these optimizations

offer significant benefits in terms of efficiency and scalability: e.g., our optimizations can

reduce latency overhead by up to 99%, 70%, and 94%, respectively.

Although we have presented OpenNF in the context of a “one-big-middlebox” abstraction,

it can also aid network operators in reducing the impact of network maintenance. For

example, using OpenNF, network operators can quickly drain the traffic and state from a

middlebox instance so the instance can be reconfigured or upgraded without needing to

terminate active connections or wait for the connections to end normally. Additionally,

OpenNF has applicability beyond a traditional data center. In particular, OpenNF can help

address many of the same performance and high availability challenges faced by network

service providers transitioning to network functions virtualization (NFV) [20].
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5 conclusion and future work

In this thesis, we have conducted measurements and proposed solutions to understand and

mitigate some of the most common causes of functional and performance failures in data

center networks. In this closing chapter, we summarize our key contributions and present

directions for future research that can help further reduce the frequency and severity of data

center network failures.

5.1 Contributions and Impact

Identifying Problematic Network Management Practices. In Chapter 2, we intro-

duced a management plane analytics (MPA) framework [74] that characterizes the relation-

ships between network management practices and the frequency of network problems. Data

center network operators can apply MPA to their networks to: (1) determine the top k

practices that cause an increase in the frequency of network problems, and (2) predict, in

an ongoing fashion, what impact a specific set of management practices will have on the

health of individual networks. To achieve this, MPA uses carefully selected analysis and

learning techniques, including mutual information, propensity score matching, boosting, and

oversampling. These techniques help overcome the challenges introduced by the sometimes

non-linear, overlapping, and skewed relationships between management practices and the

rate of network problems. We have released the source code for MPA [18] so organizations

can apply it to their own networks.

We also presented the results of applying MPA to over 850 data center networks operated

by a large online service provider. In particular, we provided the first in-depth characterization

of the network management practices used in modern data centers, and we identified several

practices that strongly impact the frequency of problems in these networks: e.g., the number

of devices, the number and type of configuration changes, and the number of device types. In

several instances, these findings contradict network operators’ perceptions: e.g., the fraction
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of changes where an access control list is modified has a non-trivial impact on the frequency

of network problems despite a majority opinion that the impact is low.

Checking Control Plane Correctness. Inspired by our observation that configuration

changes have a strong impact on the frequency of network problems, we introduced a

framework for proactively and efficiently detecting configuration errors that lead to functional

failures in the presence of infrastructure faults (Chapter 3). Our abstract representation for

control planes (ARC) [72] models a data center network’s forwarding behavior at a higher

level than other tools by taking advantage of the fact that: (1) data center networks tend to

use a limited set of routing protocols which interact in very specific ways, and (2) important

control plane analysis tasks often require computing only properties of forwarding paths, not

the paths themselves. Consequently, verifying key invariants—e.g., traffic between subnets S1

and S2 is always blocked or always traverses a middlebox—boils down to computing simple

characteristics of the graphs that makeup a control plane’s ARC. Similarly, checking the

equivalence of two control planes—e.g., that a simplified control plane always generates the

same data plane as the original control plane under arbitrary infrastructure faults—simply

requires comparing the graphs in each control plane’s ARC. By applying our framework to

a subset of the data center networks we analyzed in Chapter 2, we showed that proactive

verification with ARC is three to five orders of magnitude faster than state-of-the-art network

verification tools [66]. We have also made our implementation publicly available [1] to allow

network operators to check their own data center networks.

Maintaining Middlebox Functionality and Performance. In Chapter 4, we introduced

a framework that complements ARC by helping prevent functional and performance failures

in middleboxes—another key element of data center networks and, as shown in Chapter 2 and

other studies [75, 113], a strong contributor to data center network failures. Our middlebox

state management framework, OpenNF [71, 73], facilitates the realization of a “one-big-

middlebox” abstraction by enabling middlebox state to be replicated, transferred, or shared

between middlebox instances. Moreover, OpenNF ensures that updates to middlebox state
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are not lost or reordered and copies of state are kept eventually, strongly, or strictly consistent,

so as to avoid causing a functional failure when middlebox state is transferred or replicated.

We achieve this by introducing: (1) an event abstraction that allows a middlebox controller

to closely observe/prevent updates to middlebox state, and (2) tracer packets that allow the

controller to determine when all of a flow’s outstanding packets have arrived at a middlebox

instance. In our evaluation of OpenNF, we used three popular open-source middleboxes and

traces of traffic exchanged with a cloud data center to show that these guarantees can be

achieved with minimal latency overhead and resource demands thanks to a suite of novel

optimizations.

OpenNF has garnered significant attention from both academia and industry. In the

two years since we released the OpenNF source code [28], it has been downloaded by

over 90 individuals and a few of them have published papers describing improvements in

OpenNF’s design [94]. Additionally, OpenNF was awarded the Internet Research Task

Force’s Applied Networking Research Prize for being “relevant for transitioning into shipping

Internet products and related standardization efforts” [93]. This award exemplifies the fact

that OpenNF addresses an important problem for which network operators seek solutions.

Finally, both network operators and vendors, including Big Switch Networks, AT&T, Nokia,

and ON.lab, have affirmed that OpenNF addresses a real problem they or their customers

face. Consequently, there is a significant opportunity for OpenNF to be commercialized and

deployed in real networks.

5.2 Future Work

While the work presented in this thesis has made important headway towards reducing

functional and performance failures in data center networks through safer network manage-

ment, there are still many opportunities for reducing data center network failures. Below, we

highlight a few possible directions for future research.

Guiding network management. Knowing why an operator configured a data center
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network in a particular way—i.e., what was their intent?—can help us guide them toward

better design and operational strategies for achieving the same objective. However, like

management practices, network operators’ intentions are rarely recorded, so the first step is

to discover the intent of specific actions. For example, network operators may add a VLAN

to: (1) isolate hosts and achieve the intent of blocking communication, or (2) shrink the

size of the broadcast domain and achieve the intent of reducing congestion. We can infer

such intents by extending software engineering research designed for analyzing commits in

code repositories [102], as well as applying natural language processing algorithms to ticket

logs from incident management systems [115]. Once operator intentions are known, we can

explore various machine learning techniques for grouping operator actions by their intent

and produce a library of possible approaches for realizing specific intents. This library, along

with the predictive model produced by MPA (Chapter 2), can be used to design a system

that recommends alternative, less-failure-prone approaches to network operators.

Automating control plane configuration repairs. While ARC (Chapter 3) automati-

cally locates network configuration errors, it leaves the task of repairing these errors in the

hands of network operators. Although some issues are easy to fix, others require non-obvious

changes across multiple devices and control protocols: e.g., enabling communication between

a pair of hosts may require adding several new routing adjacencies. Thus, exploring how to

automatically identify the minimal repair that fixes an error is an important problem.

Generating correct control plane configurations. Network configuration errors are

primarily the result of network operators mis-translating their intents into low-level configu-

rations. These errors could be avoided if configurations were automatically generated from

operator intents using a provably correct process. This requires addressing two major ques-

tions: (1) What is the “right” abstraction for network operators to specify their intents? (2)

How do we automatically generate correct configurations from these intents? The outcomes

of the intent analysis discussed above can help guide the development of such an abstraction,

as well as inform our choice of configuration constructs—e.g., which routing algorithms to
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use—during the synthesis process.

5.3 Closing Remarks

The plethora of critical services hosted in data centers has made data centers, and their

constituent components, an integral part of our daily lives. Moreover, their importance will

only increase with the proliferation of the “Internet of Things”. Consequently, taking steps to

reduce and prevent data center failures, especially failures in foundational components such

as the network, should be a top priority for data center operators. We believe this thesis

makes important headway in this direction by arming operators with the metrics and tools

they need to eliminate some of the most common causes of data center network failures. It is

our hope that continued advancements along the directions pursued in this thesis will make

future data center networks orders of magnitude more reliable than they are today.
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a proving arc is comprehensive and precise

In this appendix, we prove that our methodology for generating ETGs (Sections 3.3 and 3.4)

results in comprehensive and precise ETGs.

A.1 Comprehensiveness

We first prove that the methodology presented in Section 3.3 results in comprehensive ETGs.

We start by showing that a precise ETG is also comprehensive. (Proofs of ETG precision are

sketched in Section A.2.)

Theorem A.1. A precise ETG is comprehensive.

Proof. Let path P be the min-cost path in the ETG from Src to Dst under some

infrastructure fault. Now assume the actual network has a more preferred path P ′ between

the source and destination, but P ′ does not exist in the ETG. Because P ′ does not exist

in the ETG, the min-cost path in the ETG is incorrect. This contradicts the assumption

that the ETG is precise. Thus, a precise ETG must contain every path taken by the actual

network under all possible infrastructure faults.

Now assume the ETG contains a path P ′′ from Src to Dst which is infeasible in the actual

network. Also assume all edges not on the path have been removed due to infrastructure

faults. The only, and hence min-cost, path through the ETG will be P ′′. Because P ′′ is

infeasible in the actual network, the min-cost path in the ETG is incorrect. This contradicts

the assumption that the ETG is precise. Thus, a precise ETG must not contain any paths

that are infeasible in the actual network.

For some route redistribution policies we cannot generate a precise ETG (details in

Section 3.4). However, the above methodology still generates a comprehensive ETG. We first

show that an ETG only contains a path between vertices from different routing instances if
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the instances (transitively) redistribute routes (Lemmas A.2 and A.3). Then we use this to

prove the ETG is comprehensive (Theorem A.4).

Notation. Let I be the set of routing instances in the network and Ri be the set of routers

participating in routing instance i. Let <R be a relation denoting route redistribution between

routing instances—i.e., if instance i ′’s routes are distributed to instance i ′′, then i ′ <R i ′′

(or) (i ′, i ′′) ∈<R. In the degenerate case, routes of an instance are visible within the instance;

thus, the relation satisfies reflexivity (i <R i). It is also transitive: if i <R i ′ and i ′ <R i ′′,

then i <R i ′′. Henceforth, i, i ′, . . . are not necessarily distinct unless explicitly stated.

Lemma A.2. If there exists a path of finite length in the ETG from r1 .i ′I to r2 .iO, for any

r1 , r2 , then, i <R i ′.

Proof. By construction of the ETG as described above, there is an edge from r.i ′I to r.iO, if

and only if i <R i ′. Also, note that by construction there is no direct edge between two in

(I) vertices and two out (O) vertices. Thus, the number of edges in the path is strictly odd.

With these facts, we prove using induction on the path length.

For path length of 1, there exists a direct edge from r1 .i ′I to r2 .iO; thus, i <R i ′.

Let us assume the lemma holds for any path of length 2k− 1, where k is the number of

routers in the path. A path of length 2k+1 can be broken down into 3 parts: a redistribution

edge r1 .i ′I → r1 .i ′′O, an inter-device edge r1 .i ′′O → r3 .i ′′I, and a path of length 2k− 1 from

r3 .i ′′I to r2 .iO. The first edge implies, i ′′ <R i ′, and by assumption that the lemma is true

for paths of length 2k− 1, we have, i <R i ′′. Thus, using the transitivity property of route

distribution, we have i <R i ′.

Lemma A.3. If there exists a path of finite length in the ETG from r1 .i ′I to r2 .iI, (or)

r1 .i ′O to r2 .iI, (or) r1 .i ′O to r2 .iO, for any r1 , r2 , then i <R i ′.

Proof. Similar recursive proof as shown in Lemma A.2.

Theorem A.4. An ETG is comprehensive when routes are redistributed between OSPF, RIP,

and/or eBGP instances.
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Proof. Let Si be the set of routers in routing instance i that are directly connected to the

source (i.e., Si ⊆ Ri). and Di be the set of routers in routing instance i that are directly

connected to the destination (i.e., Di ⊆ Ri). By construction of the ETG as describe above,

there is an edge from Src to s.iO for each s ∈ Si and from d.i ′I to Dst for each d ∈ Di ′ for

all i ′ ∈ I .

Assume i ′ ≮R i but there is a path from s.iO to d.i ′I; this implies the ETG contains a

path that is infeasible in the real network under arbitrary infrastructure faults. However,

according to Lemma A.3, if there exists a path from s.iO to d.i ′I, then i ′ <R i. This is a

contradiction. Hence, the ETG must not contain any paths that are infeasible in the real

network.

Now assume i ′ <R i but there is no path from s.iO to d.i ′I. Assuming advertisements/-

traffic for the destination prefix are not blocked by route filters or ACLs, this implies the

ETG does not contain every path between the source and destination endpoints that is used

in the real network under arbitrary infrastructure faults. However, assume i ′ <R i ′′ and

there is a path from s.iO to r.i ′′I and a path from r.i ′O to d.i ′I. By Lemma A.3 i ′′ <R i,

and transitivity i ′ <R i. By construction of the ETG as described above, we add an edge

from r.i ′′I to r.i ′O if and only if i ′ <R i ′′. Thus, the ETG contains a path from s.iO to d.i ′I.

This is a contradiction. Hence, the ETG must contain every path that is feasible in the real

network.

A.2 Precision

We now show that the methodology presented in Section 3.4 results in precise ETGs. We

start by considering scenarios without route redistribution.

Theorem A.5. An ETG is precise when the source and destination are connected to routers

participating in the same RIP or single-area OSPF routing instance and no routes are

redistributed into the instance.
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Proof. The weights assigned to inter-device edges within the routing instance are proportional

to the link weights used by OSPF or RIP. Because no routes are redistributed into the instance,

a process’s in vertex will only be connected to its own out vertex and the edge will be assigned

a weight of 0. Contracting such edges does not impact the set of possible paths, nor their

weights, in the ETG. The contracted graph will be equivalent to the graph used by OSPF or

RIP to compute routes. Thus, the ETG is precise.

Theorem A.6. An ETG is precise when the source and destination are connected to routers

participating in the same eBGP routing instance, AS path length is the only selection criterion

used by the eBGP processes, and no routes are redistributed into the instance.

Proof. Each inter-device edge between eBGP processes represents an AS hop. Assigning the

same weight to every edge results in the weight of a path being proportional to the number

of hops, which we assume is the only selection criteria.

Now we consider scenarios with route redistribution.

Notation. We use the same notation presented in Section A.1. Additionally, let Bi ′,i ′′ be the

set of routers that are configured to redistribute routes from routing instance i ′ to instance i ′′.

Although a router b ∈ Bi ′,i ′′ may be configured to redistribute routes from routing instance

i ′ to instance i ′′, routes redistribution actually occurs only if both of the following conditions

hold: (1) the routing process for instance i ′ has a route to the destination, and (2) no higher

priority process on b has a route to the destination. We denote the set of routers that actively

distribute routes to the destination between i ′ and i ′′ by Bactive
i ′,i ′′ ⊆ Bi ′,i ′′ .

Let ci ′,i ′′ denote the cost of distributing routes from routing instance i ′ to instance i ′′.1

These redistribution costs are included in the cost of intra-device edges in the ETG: e.g., an

edge from a vertex b.i ′′I to a vertex b.i ′O for some router b ∈ Bi ′,i ′′ .

First, we extend our earlier lemmas to show that any routing instance a path traverses

must (transitively) redistribute routes.
1Without loss of generality, we assume ci ′,i ′′ is set to the same value on all routers in Bi ′,i ′′ .
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Lemma A.7. If i ′ <R i and i ′′ <R i, then any path through the ETG from vertex r.i ′∗ to

r.i ′′∗ does not contain a vertex r.i ′′′∗ such that i ′′′ ≮R i.

Proof. By contradiction. If there exists such a vertex, then using above Lemma A.2,

i ′′′ <R i ′. Then, using transitivity, i ′′′ <R i. Thus, there exists no such vertex for which <R

is not satisfied.

Lemma A.8. Any path from vertex r.i∗ to Dst, does not contain a vertex r.i ′′′∗ such that

i ′′′ ≮R i.

Proof. This lemma is a special case of Lemma A.7, if i ′ = i and Dst is directly to attached

to a router in instance i ′′.

Next, we show that a path between two vertices associated with the same routing instance

cannot pass through a vertex associated with a different routing instance, because this is not

allowed in the actual network when route redistribution is a DAG.

Lemma A.9. If <R is a partial order, then for r1 , r2 ∈ Ri and |Ir1 | = |Ir2 | = 1, any path in

the ETG from r1 to r2 , will not contain vertices of the form r.i ′I or r.i ′O, where i 6= i ′.

Proof. If there exists a vertex of the form r.i ′I or r.i ′O, then from Lemma A.2 and

Lemma A.3, we have i ′ <R i and i <R i ′. The relation is thus not a partial order, violating

our assumption.

Now we show the path within a routing instance is precise.

Lemma A.10. If <R is a partial order, then for routers r1 , r2 ∈ Ri and |Ir1 | = |Ir2 | = 1, the

path in the ETG from r1 to r2 , is identical to the shortest path computed by instance i.

Proof. Using Lemma A.9, we know that, under the assumptions, all path are restricted

to vertices in the ETG belonging to the same instance: i.e., r.iI or r.iO, for r ∈ Ir . By

construction of the ETG, we know that all the costs of vertices corresponding to a single

routing instance are a multiple of the actual configured costs. Thus, shortest paths calculated
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using the scaled down version of the actual costs are identical. From Theorems A.5 and A.6,

the path within a routing instance is precise.

Lemma A.11. If <R is a partial order and i ′ <R i and i ′′ <R i, then the length of any

path in the ETG from vertex r.i ′∗ to r.i ′′∗ is less that the least difference between paths with

vertices of instance i, denoted by gi.

Proof. By construction. As described above, if a routing instance distributes its route

to another instance, its link costs in the ETG are scaled down by an order of magnitude.

Together with Lemma A.7 we can say that all edges in the path have cost an order of

magnitude less.

When multiple routing processes on router s have a route to the destination, s chooses

the route from the highest priority process, according to administrative distance (AD). The

priority of routing instance i on router r is denoted by pi
r ; the instance with the lowest AD

has priority 0, and the instance with the highest AD has priority |Ir |− 1

Axiom A.12. For a router, b, belonging to multiple routing instances, if b ∈ Bactive
i ′,i , then

b 6∈ Bactive
i ′′,i for all, i ′′ such that pi ′′

b 6= pi ′
b .

Theorem A.13. An ETG is precise when the redistribution of routes between OSPF, RIP,

and/or eBGP processes is acyclic, and the fixed costs assigned to redistributed routes are

congruent with the redistributor’s AD.

Proof. We will prove precision through induction on the routing instance. Let us assume

that, for all i : i <R i ′, the shortest path from vertex r.iO ∈ Ri to Dst is precise. Under the

assumption, we will then show that the path from r.i ′O to Dst is precise. The assumption

we make is strong but valid, since, (1) using Lemma A.8, we know that any path to Dst

only has vertices of instances that redistribute routes to i ′, and, (2) <R is a partial order

and hence there is no cyclical dependency between instances whose vertices have a precise

path to the destination.
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If r.i ′O belongs in a path to the destination, it implies that the routing process for

instance i ′ on router r was the dominant process based on administrative distance and route

availability to the destination. From the perspective of r ∈ Ri ′ , the minimum distance to the

destination is given by:

H(r, Dst) = min
(

mind∈Di ′ Hi ′(r, d),

mini,b∈Bactive
i,i ′

(Hi ′(r,b) + ci,i ′)

) (A.1)

where, Hi ′(x,y) is the distance from x to y as seen by i ′. The actual path taken depends on

which term in the right hand side of Equation A.1 achieves the minimum. If Di ′ = ∅ and

Bi,i ′ = ∅,∀i, then there is no path to vertex Dst.

If one of d ∈ Di ′ achieves the minimum, then using Lemma A.10 we can show the shortest

path to vertex Dst is precise.

Otherwise, if one of the terms in mini,b∈Bactive
i,i ′

Hi ′(r,b) + ci,i ′ (say i∗ and b∗) achieves the

minimum, then the destination is reached through another routing instance. We show that

the shortest path in the ETG from vertex r.i ′O to Dst passes through vertex b∗.i∗O.

Let us assume the shortest path to the destination does not go through, b∗.i∗O. Then

there exists another vertex b◦.i◦O which the path traverses to reach Dst.

Case 1 : b◦ = b∗ and pi◦
b∗ > pi∗

b∗ .

By assumption, we know the path from b∗.i◦O is precise. If i◦ has a path to the destination,

then b∗ ∈ Bactive
i◦,i ′ . Then, using Axiom A.12, b∗ 6∈ Bactive

i∗,i ′ . Thus, b∗, i∗ would not be the

minimizing term in Equation A.1 violating our assumption. Hence, i◦ has no path to the

destination, and cannot be the shortest path.

Case 2 : b◦ = b∗ and pi◦
b∗ < pi∗

b∗ (or) b◦ 6= b∗.
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Since it is the shortest path, we require

F(r.i ′O, b◦.i◦O) + F(b◦.i◦O, Dst)

< F(r.i ′O, b∗.i∗O) + F(b∗.i∗O, Dst)
(A.2)

where, F(., .) is the distance along the shortest path in the ETG.

But from Lemma A.11 we know that,

F(r.i ′O, b◦.i◦O) − F(r.i ′O, b∗.i∗O) > gi ′ (A.3)

and,
0 6 F(b◦.i◦O, Dst) < gi ′

0 6 F(b.iO, Dst) < gi ′
(A.4)

From Equations A.2 and A.4, we have

F(r.i ′O, b◦.i◦O) − F(r.i ′O, b∗.i∗O)

< +F(b∗.i∗O, Dst) − F(b◦.i◦O, Dst) < gi ′
(A.5)

Equation A.3 contradicts Equation A.5. Thus, there cannot exist b◦ 6= b∗ and i◦ 6= i∗.
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b proving opennf’s move operation is loss-free and

order-preserving

In this appendix, we prove that OpenNF’s move operation is loss-free and order-preserving.

As discussed in Section 4.4, we assume TCP-based control channels are used between the

OpenNF controller and middleboxes, so southbound API calls, state, and events are not

lost or reordered. Furthermore, packets may be lost (but we assume not reordered) on the

network paths from gw to srcInst and gw to dstInst.

Notation. Let pi be the ith packet for a flow f that arrives at gw and 〈p〉i,j be the sequence

of packets from i to j. Also, let Si,j = φSinit(〈p〉i,j) be the value of the per-flow state for f

after processing 〈p〉i,j starting from initial state Sinit .

The controller issues all southbound API calls and route updates so we can definitively

order the actions in time:

t1 Enable events and packet dropping for f on srcInst

t2 Get per-flow state S from srcInst

t3 Put per-flow state S to dstInst

t4 Extract packets from events buffered on controller and send to dstInst

t5 Enable events and packet buffering for f on dstInst

t6 Change the route for f on gw to forward to dstInst

t7 Send a tracer packet to gw to forward to srcInst

t8 Disable events and release packet buffer for f on dstInst

We use the time points to refer to the completion of each action from the perspective of the

node on which the action is performed.

Theorem B.1. If a control application requests a loss-free move, OpenNF guarantees all

state updates resulting from packet processing are reflected at the destination instance, and

all packets the switch receives should be processed.
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Proof. Let pk (1 < k < n) be the first packet for f to arrive at gw after t6 . Then, 〈p〉1 ,k−1

will be forwarded to srcInst, and 〈p〉k,n will be forwarded to dstInst.

Of the packets forwarded to srcInst, let pj (1 < j < k) be the first packet for f to be

dequeued at srcInst after t1 . Then, 〈p〉1 ,j−1 will be processed at srcInst before t1 , resulting

in per-flow state S1 ,j−1 . In contrast, 〈p〉j,k−1 will be sent to the controller in events and

dropped at srcInst.

Since no packets are processed at srcInst after t1 , the state S1 ,j−1 will be exported from

srcInst at t2 and imported on dstInst at t3 . Also, since no packets are forwarded to dstInst

before t6 , there won’t be state S to overwrite or combine during the import at dstInst.

Events for 〈p〉j,k−1 may arrive at the controller anytime after t1 . If they arrive before t3 ,

they are buffered. Starting at t3 , packets are extracted from the buffered events and sent to

gw to be forwarded to dstInst. If events from srcInst arrive at the controller after the buffer

is empty (i.e., after t4 ), the packets they contain are immediately sent to dstInst. Since the

control channel from the controller to dstInst is reliable, all pi ∈ 〈p〉j,k−1 will arrive at dstInst

and be processed.

After t6 , 〈p〉k,n will arrive at dstInst. They will be processed as they arrive. In summary,

〈p〉1 ,j−1 will be processed at srcInst, with Sinit as the initial per-flow state, and 〈p〉j,n will be

processed at dstInst, with S1 ,j−1 as the initial per-flow state, implying move is loss-free.

Theorem B.2. If a control application requests an order-preserving move, OpenNF guarantees

all packets are processed by a middlebox instance in the order they were forwarded to the

middlebox instance by the switch.

Proof. As above, let pk be the first packet for f to arrive at gw after t6 and pj be the first

packet for f to be dequeued at srcInst after t1 . Then, 〈p〉1 ,j−1 will arrive and be processed at

srcInst in order before t1 . Similarly, 〈p〉k,n will arrive (after t6 ) and be processed (after t8 ) at

dstInst in order. To guarantee order-preserving, dstInst must have S1 ,k−1 by t8 . From above,

we know dstInst will have S1 ,j−1 by t3 . Thus, we need to show that dstInst will receive and

process 〈p〉j,k−1 in order after t3 but before t8 .
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Events for 〈p〉j,k−1 may arrive at the controller anytime after t1 . Events arriving before

t3 are buffered, while events arriving after t4 are handled immediately. The controller will

extract the packets from these events, mark the packets with a “do-not-buffer” flag, and send

them to dstInst. Since 〈p〉j,k−1 is sent from srcInst to the controller through a TCP channel

and from the controller to dstInst through a TCP channel, the order of packets within this

sequence is preserved and none will be lost. The packets will be processed at dstInst as they

arrive, resulting in per-flow state S1 ,k−1 at dstInst.

Since a tracer packet is not sent to gw to be forwarded to srcInst until after t6 , no other

packets for f will arrive at srcInst after the tracer packet (assuming no reordering occurs

on the path from gw to srcInst). Thus, all events from srcInst for 〈p〉j,k−1 will arrive at the

controller before an event for the tracer packet. Furthermore, an event for packet pk−1 (or

an earlier packet in 〈p〉j,k−1 if pk−1 is dropped on the path from gw to srcInst) will be the

last event to arrive before an event for the tracer packet. This allows the controller to know

that pk−1 was the last packet forwarded to srcInst.

Once the controller receives an event for pk−1 from dstInst, it knows dstInst has processed

p1 ,k−1 and has the state S1 ,k−1 . Therefore, the controller can guarantee that dstInst has

state S1 ,k−1 by t8 and move is order-preserving.

The proofs can be extended to moves involving multi-flow state by expanding the notion

of flow to actually refer to a group of flows.
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