
REAL-TIME TCP FOR EMBEDDED DEVICES
Aaron Gember

Marquette University, Dept. of Mathematics, Statistics, and Computer Science
1313 W. Wisconsin Ave., Milwaukee, WI 53233

agember@mscs.mu.edu
Advisor: Dr. Dennis Brylow

PROBLEM & MOTIVATION
An increase in both mult imedia-based network services and embedded clients is presenting new
challenges for exist ing network protocols. Time-sensit ive services like Internet streaming media
and Voice over IP require protocols which provide real-t ime performance. The protocols must also
function well within the limited processing and memory constraints of embedded clients.
The goal of this work is to develop a real-t ime Transmission Control Protocol that sat isfies the
constraints of embedded devices while providing a transport mechanism for both general and
time-sensit ive data.
Transmission Control Protocol (TCP) [10] is the most widely used transport protocol [4]. It is a
reliable network protocol appropriate for loss-sensit ive streaming media. TCP's in-order delivery
guarantees and network congestion control features are also sources of its merit . Many firewalls
are configured to block User Datagram Protocol (UDP) packets, so TCP-based streaming is
currently used for the majority of Internet streaming traffic [6]. Unfortunately, typical TCP
implementations do not provide the t imeliness necessary for streaming media. Compared to
other network data, mult imedia content is extremely sensit ive to delay [5].
The processing and memory limitat ions of embedded systems create addit ional design
constraints. First , the number of network stack layers needs to be minimized to avoid addit ional
processing overhead. Second, the implementation should have a small code base and reuse the
same code as much as possible. This can be achieved by implementing a commonly used transport
protocol (in this case TCP) and extending it to also provide real- t ime communications. Last ly,
embedded clients can only buffer small amounts of streaming data. The client needs to be able to
continually receive data in a predictable t ime frame to provide suitable performance.

BACKGROUND & RELATED WORK
True real-t ime network performance requires the collaboration of the underlying network
hardware. But control of this hardware is typically infeasible. The goal of real-t ime TCP and other
real-t ime network protocols is to provide a best attempt at real-t ime communication using
mechanisms at the transport layer of the network stack. Previous work on streaming media over
TCP has focused on congestion control and its effect on delay. A model of the delays associated
with TCP in relat ion to streaming media was created by [2] and [13]. TCP Friendly Rate Control
(TFRC) is a protocol designed to reduce throughput variat ions caused by congestion [7].
Many streaming media applicat ions use Real-t ime Transport Protocol (RTP)[11]. RTP is primarily
used for mult i-part icipant mult imedia applicat ions. The protocol is designed to be flexible and
adaptable and "to provide the information required by a part icular applicat ion" [11]. RTP provides
applicat ion level framing and, like TCP, sequence numbering. Packet delivery is not guaranteed
and RTP does not attempt retransmission of lost packets. The protocol typically sits on top of
UDP, but TCP and Stream Control Transmission Protocol(SCTP) [12] have been used.
A number of applicat ion layer techniques have also been developed to address the challenges of
streaming media. The technique known as fast streaming transmits media data faster than the
encoding rate [6]. Rate adaptation changes between different encoding rates to compensate for
network speed fluctuations [6].
The environment for this research is Embedded Xinu [3]: an educational embedded operating
system running on Linksys WRT54GL wireless routers [9]. The operating system features thread
scheduling, messaging passing, memory management, serial and TTY interfaces, a user shell, and a
network stack. Both the WAN and LAN two network interfaces use direct memory access and have
a ring buffer capable of holding 512 packets. Packets are demult iplexed and processed using
mult iple network receive threads. The network stack currently supports Address Resolut ion

Protocol (ARP), Internet Protocol (IP), Internet Control Message Protocol (ICMP), Dynamic Host
Configuration Protocol (DHCP), UDP, and (as an outcome of this research) TCP. Overall, Embedded
Xinu consists of a straightforward and succinct code base comprehensible by undergraduate
students.
The regular TCP implementation in Xinu (the first phase of this research) consists of four
categories of functions: receive, send, t imer, and user-level. The implementation is approximately
2000 lines of C code. The main receive function is called by the IP layer of the network stack to
process an incoming TCP packet; sub-functions demult iplex the packet to the appropriate TCP
connection and process control flags and data based on the current connection state. Send
functions prepare an outgoing TCP packet including control flags, acknowledgement and sequence
numbers, window advert isement, options, and data. A send function in the IP layer is called to add
addit ional headers and send the packet. Retransmission, zero-window persist , and 2-MSL t imeout
are handled by t imer functions. A TCP t imer thread triggers packet sending and connection state
changes at scheduled intervals. Last ly, user-level functions provide a socket interface for opening,
reading, writ ing, controlling, and closing TCP connections, paralleling the standard device paradigm
used throughout Xinu.

UNIQUENESS OF THE APPROACH
Real-t ime TCP facilitates soft real-t ime constraints for networking with embedded devices. Only
the receiver-side of a connection requires changes. Real-t ime TCP does not require changes to the
sender-side. In the case of mult imedia applicat ions where data is typically only sent in one
direct ion, only the mult imedia client (the receiver-side) needs to change. This approach differs
from other approaches, like [8], which require new protocols on both sides of the connection.
Changing only one side of the connection limits the overhead associated with disseminating the
new extensions.

A best effort is made to receive data by a specific deadline. It is
assumed that data received after a specific deadline is useless to the
applicat ion; the missed data should be discarded. To accommodate
the real-t ime constraints the data delivery guarantee of TCP is
relaxed. When a deadlines occurs and data is unavailable, real-t ime TCP
skips over the data, proceeding to receive data for the next deadline.
No data is returned to the applicat ion. Figure 1 illustrates the

concept. Real-t ime TCP begins to receive and acknowledge data the same as regular TCP,
providing the first two octets of data to the applicat ion at deadline 1. When deadline 2 occurs,
only one octet of data is available. Real-t ime TCP skips over both octets and returns no data to
the applicat ion; regular TCP behavior resumes. By deadline 3 two more octets are received and
provided to the applicat ion. The in-order delivery and retransmission features of regular TCP are
maintained in real-t ime TCP.
Approximately 90 lines of addit ional C code and five addit ional control block fields are required for
real-t ime TCP. Modifications are made to two functions: read and receive. The user-level read
function is transformed to be non-blocking. The buffer length passed to read is interpreted as the
length of a frame and only full frames are returned to the applicat ion. If a full frame of data is
available in the buffer of received data, the read call removes the data from the buffer and returns
the data as normal. When a full frame of data is not in the buffer of received data, the entire frame
of data is skipped. An acknowledgement (ACK) is sent to the sender, acknowledging the full frame
of data as if it was all received. No data is returned to the applicat ion. On the sender-side, the ACK
is received and the sender assumes all data in the frame was received. Per regular TCP behavior,
the sender no longer attempts to retransmit the data and moves forward to transmit the next
octets of data following the frame.
Figure 2 illustrates the modified behavior. (The figure only shows one octet of data sent at a t ime
for explanatory purposes; a received data buffer of one octet should also be assumed.) When a
deadline occurs at t ime 3 and the buffer is empty, the receiver sends an ACK to indicate one octet
was skipped; no data is returned to the applicat ion. Upon receiving this ACK, the sender transmits
the next octet of data. The receiver buffers the data at t ime 5 and sends an ACK. The sender again
transmits the next octet while the receiver simultaneously provides the buffered octet to the
applicat ion. Notice that the fake ACK sent at t ime 3 to skip over the first octet of data causes the

sender to send the next octet. If the fake ACK was not sent, the sender would have waited until
the data was actually received and acknowledged at t ime 5, result ing in more missed deadlines.
The receive function is extended to handle a special case: the
receiver skips over data which has not yet been sent. As
discussed above, whenever the receiver-side skips over a frame
it sends an ACK to the sender. However, it is possible the ACK
acknowledges data which has not yet been sent. Since the
sender is a normal TCP implementation it assumes the ACK
must be a matter of confusion. It replies with an ACK which
includes the sequence number of the next octet of data it
plans to send; this sequence number will be less than the end
of the frame which the receiver tried to skip over. The receive
function on the receiver is modified to catch this "special" ACK
and backtrack its attempt to skip over one or more frames of
data. No improvement can be realized by real-t ime TCP when
the sender-side has not sent a frame.

The modified receive
behavior is illustrated in
figure 3. The first octet of
data is sent, acknowledged,
received, and returned as
normal for the deadline at
t ime 3. When the deadline
at t ime 6 occurs, the read
function sends an ACK to
skip over the frame (one octet of data). Since the sender has
not yet sent the second octet, it replies at t ime 7 that the
next octet it will send is the second octet. The receiver will
backtrack its attempt to skip over the octet when the ACK is
received at t ime 8. When the second octet arrives at t ime 9,
just in t ime for the deadline, the second octet is returned to
the applicat ion. If the second octet was not sent until much
later, the receiver would have continually skipped over the
second octet and then backtracked is attempt.

RESULTS & CONTRIBUTIONS
Benchmarking was performed using two routers running Embedded Xinu and a computer running
the ns-2 [1] network simulator on FreeBSD. The source router contained a 719KB mult imedia file
and ran the regular TCP implementation in Embedded Xinu. The destination router ran the
real-t ime TCP implementation and attempted to read 2KB of data every 250ms to match the
encoding rate of the file. The destination router had a 4KB buffer for received data, a small size
appropriate for an embedded client. Both routers had an init ial zero-window persist t imer of 3
seconds. Network delay and dropped packets between the source router and the destination
router were emulated using ns-2. A 10ms delay existed between the two routers in both direct ions
of communication. Emulation of 0%, 2%, 4%, 6%, 8%, and 10% dropped packets were used.
Performance was measured based on the percentage of deadlines met over an average of three
runs for each of the drop rates.
The benchmarking results are shown in figure 4. For the regular TCP implementation (not shown in
the graph) only 1% of the deadlines were met for all packet drop rates. Regular TCP is focused on
guaranteed data delivery, so it retransmits dropped data; by the t ime this data arrives the
receiver has missed a deadline. A missed deadline occurs within the first few read calls because of
the side- effects of a small buffer, described below. Once regular TCP misses the first deadline it
falls behind and never catches up, result ing in only 1% of deadlines being met. The percentage of
deadlines meet for the "skip over data" mechanism used by real-t ime TCP is much better than
regular TCP. However, the performance is st ill much lower than expected. Only 63% to 67% of the
deadlines are met. The expectation was to miss fewer deadlines than the percentage of packets
dropped. The results show no correlat ion between percentage packet drop and percentage of
deadlines met.

The poor performance can be part ially
explained by the concept of the TCP
sliding window. The TCP sliding window is a
range of octets the receiver (or
destination router) is willing to accept
from the sender (or source router).
Window size is determined by the
receiver's buffer size and congestion
control algorithms. Each ACK includes the
current size of the receiver's window.
When the receiver advert ises a window
size of zero, the TCP specification dictates
the sender should enter a zero-window
persist state. In this state, the sender is
responsible for occasionally sending an
ACK to probe the receiver and determine
if the window size has become non-zero.
When the advert ised window size becomes
non-zero, the sender can leave the
zero-window persist state and resume sending data to the receiver.
The destination router running real-t ime TCP is configured to have a small buffer - only 4 KB. This
buffer is rapidly filled and the window size becomes zero. The last ACK the destination router
sends contains a window advert isement of zero, so the source router enters the zero-window
persist state, scheduling a t imer to probe the receiver 3 seconds later. In the meantime, the
destination router consumes two frames of data (totaling 4KB). When it tries to consume the third
frame of data, at t ime 750ms, the buffer is empty. The destination router skips over data, sending
an ACK which includes a window advert isement for a window size of 4KB since the buffer is now
completely empty and available for more data. The source router leaves the zero-window persist
state before its t imer is triggered and again sends data to refill the buffer on the destination
router. Thus a deadline is missed approximately every third frame, accounting for the results
shown in figure 4.
To help remedy the issue, an optional feature known as gracious window update can be included in
the real-t ime TCP implementation. The receiver sends an ACK, including a window update, to the
sender every t ime a read call on the receiver-side results in the window becoming non-zero.
Gracious window is not required by the TCP specification, although FreeBSD and Linux both
implement this feature. Figure 4 shows the improvements in percentage of deadlines met for
real-t ime TCP's skip over data mechanism "with gracious window update." It is important to note
that adding only gracious window update to regular TCP will not yield much performance
improvement. As soon as an ACK with a gracious window update is dropped, TCP will begin to fall
behind and all further deadlines will be missed.
One concern with gracious window update in real-t ime TCP is its effect on congestion. Congestion
control is one of TCP's merits which real-t ime TCP should preserve. Sending an ACK every t ime the
buffer becomes non-zero will result in many addit ional ACKs. If the network is congested, this will
exacerbate the situation. Future work will focus on developing an algorithm to determine when a
gracious window update is required. Round-trip t ime and an understanding of when the next
deadline will occur are suspected to be key pieces of information for developing this algorithm.
Addit ional benchmarking is also necessary as future work. The effect of network delay on real-t ime
TCP should be measured and changes made if necessary. Increases and decreases in buffer size are
also an important factor to consider. Last ly, real-t ime TCP should be benchmarked against other
protocols like UDP and RTP.
Real-t ime TCP for embedded devices meets the needs of both real-t ime and general network
traffic while sat isfying the constraints of embedded systems. The minimal addit ional code
overhead makes real-t ime TCP an ideal candidate for a system that also requires regular TCP. In
keeping with the straightforward design of Embedded Xinu, real-t ime TCP is design with simplicity
in mind. As a posit ive result of lower than expected performance, real-t ime TCP has illustrated the
importance of gracious window update. Also, it has exposed network emulation as a potential new

research direct ion for Embedded Xinu. Real-t ime TCP has room for improvement, but its unique
approach makes it a well-suited transport protocol for real-t ime networking needs.

REFERENCES
[1] The network simulator - ns-2. http://www.isi.edu/nsnam/ns.
[2] E. Brosh, S. A. Baset, D. Rubenstein, and H. Schulzrinne. The delay- friendliness of TCP. In SIGMETRICS '08:
Proceedings of the 2008 ACM SIGMETRICS international conference on Measurement and modeling of computer
systems, pages 49-60, New York, NY, USA, 2008. ACM.
[3] D. Brylow. An experimental laboratory environment for teaching embedded operating systems. SIGCSE Bulletin,
40(1):192-196, 2008.
[4] A. Dunkels. Full TCP/IP for 8-bit architectures. In MobiSys '03: Proceedings of the 1st international conference on
Mobile systems, applications and services, pages 85-98, New York, NY, USA, 2003. ACM.
[5] P. Fouliras. On RTP filtering for network traffic reduction. In MoMM '08: Proceedings of the 6 th International
Conference on Advances in Mobile Computing and Multimedia, pages 356-359, New York, NY, USA, 2008. ACM.
[6] L. Guo, E. Tan, S. Chen, Z. Xiao, O. Spatscheck, and X. Zhang. Delving into internet streaming media delivery: a
quality and resource utilization perspective. In IMC '06: Proceedings of the 6th ACM SIGCOMM conference on Internet
measurement, pages 217-230, New York, NY, USA, 2006. ACM.
[7] M. Handley, S. Floyd, J. Padhye, and J. Widmer. TCP friendly rate control (TFRC). RFC 3448, Jan 2003.
[8] S. Liang and D. Cheriton. TCP-RTM: Using TCP for real time multimedia applications. In International Conference on
Network Protocols, 2002.
[9] Linksys. WRT54GL wireless-G broadband router. http://www.linksys.com.
[10] J. Postel. Transmission control protocol. RFC 793, Sep 1981.
[11] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A transport protocol for real-time applications. RFC
3550, Jul 2003.
[12] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, and V. Paxson.
Stream control transmission protocol. RFC 2960, Oct 2000.
[13] B. Wang, J. Kurose, P. Shenoy, and D. Towsley. Multimedia streaming via TCP: An analytic performance study. ACM
Trans. Multimedia Comput. Commun. Appl., 4(2):1-22, 2008.

