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ABSTRACT
Smartphones, portable music players, and other handheld
devices have become a major computing platform. Wher-
ever users go, they utilize 3G and WiFi connectivity to ac-
cess a wide array of Internet services. The small, mobile
nature of these devices results in a unique mix of application
and network usage. As more handheld devices connect to
campus, enterprise, and community WiFi networks, admin-
istrators need to adjust their network’s configuration to cope
with the unique traffic characteristics of handhelds. Other
studies have used WiFi and 3G wireless traces to analyze
session, mobility, and performance characteristics for hand-
held devices. We complement these studies by examining
how the content and flow characteristics of handheld traf-
fic elicit network management changes. We analyze packet
traces from the University of Wisconsin-Madison campus
and computer science wireless networks, with 3 days of traf-
fic for over 32,000 unique devices. Trends for handheld de-
vices include a lower usage of UDP, a high volume of HTTP
traffic, and a greater proportion of video traffic. We sum-
marize key implications for network management and sug-
gest configuration changes to maintain suitable network per-
formance as handheld devices become the primary users of
wireless networks.

1. INTRODUCTION
Handheld devices are quickly augmenting, and in some

cases even replacing, laptops as the computing and Internet
perusal platform of choice for many users on the go. Individ-
uals are using smartphones, portable music players, ebook
readers, and other handhelds to access a variety of Internet
applications and data.

In this paper, we seek to understand what would happen
as the number of mobile handheld devices devices becomes
comparable to, or exceeds, the number of laptops on campus
wireless networks. In particular, we wish to understandwhat
new approaches must be developed to manage campus net-
works in order to improve the experience of mobile handheld
users, assuming current handheld access patterns hold?

We focus on issues pertaining to the management of the
wired backends, and of network-based services deployed across
the backend. The characteristics of handheld traffic inform
the management of the network for performance and secu-

rity, and guide administrators in supporting and deploying
new middleboxes and network services. To the best of our
knowledge, these issues have not been considered in prior
work. We ignore low-level wireless transmission, connec-
tivity, and mobility issues as these have already been well
studied [4, 10, 14].

Understanding these issues is both timely and important:
According to a 2009 EDUCAUSE study of technology on
college campuses, 51% of undergraduates own an Internet-
capable handheld device and 12% plan to purchase a de-
vice within the next 12 months [19]. In addition, a recent
PEW study comparing 2007 and 2009 wireless Internet us-
age among Americans found a 73% increase in the rate users
went online with their handhelds [12]. While the number of
non-handheld portable devices, such as laptops, is also grow-
ing, the number of handheld devices is growing at a much
faster pace.

Although many handheld users have 3G data plans from a
cellular carrier, 802.11 WiFi access is still a preferred Inter-
net access mechanism, when available, because of its higher
bandwidth, lower latency, and lower energy usage. WiFi net-
works in campuses, enterprises, and communities are seeing
increasing numbers of handhelds as the popularity of these
devices continues to grow.

The traffic characteristics of WiFi networks change as hand-
held devices represent a larger proportion of clients. Com-
pared to wireless desktop and laptop users, handheld users
access a different mix of Internet services and content. The
small screen size and limited resources of handheld devices
make some applications infeasible to run, while other appli-
cations are more appropriate for the “take anywhere” nature
of these devices. Applications like web browsers and email
clients are used on both handheld and non-handheld devices,
but service providers tailor the content differently for the
two classes of devices. Furthermore, the browser interface
on handheld devices in itself places limitations on the range
of both Internet-based and local network-based services that
users can access. Thus, the network traffic of handheld de-
vices is likely to differ in several crucial respects from non-
handheld devices, e.g., in terms of flow lengths, protocol us-
age, access to services, the prevalence and nature of multi-
media content, and temporal and spatial locality of content
access.
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We use traces of network traffic gathered at the University
of Wisconsin-Madison from two independently-managedmulti-
AP wireless networks over a 3 day period to identify how
handheld network traffic differs from the traffic characteris-
tics of non-handheld devices. The traces contain over 32,000
unique clients, with about 15% of these being handhelds.
We examine the traffic patterns, protocols and content of the
transport and application layer traffic associated with hand-
helds. Our goal is to identify network management changes
stemming from our observations, assuming these patterns re-
main the same but the number of handheld users grows.

Our key findings can be summarized as follows. The ma-
jority of handheld traffic (97%) is web, with small amounts
of email traffic. In contrast, 82% of non-handheld traffic is
web, with miscellaneous UDP traffic (14%) and internal ser-
vices accounting for the remaining share. As handheld pop-
ulations increase, administrators should focus less on pro-
viding internal services and instead focus on the quality of
Internet access. In terms of TCP flow characteristics, hand-
helds tend to have smaller flows and a narrower range of
flows durations. However, both types of devices have similar
flow rates, with a median rate of 100 KBps. The similarity
in flow rates for handhelds and non-handhelds implies that
the aggregate network throughput is unlikely to change as
handheld usage increases.

We look in-depth at HTTP traffic because it accounts for
such a large share of traffic for both types of devices. Hand-
held devices access content from a narrower range of hosts
than non-handheld devices; the top ten handheld hosts ac-
count for 74% of handheld HTTP content, while the top
hosts for non-handhelds only account for 42% of non-handheld
content. Less than 100 different types of content are ac-
cessed by handhelds, compared to over 275 types for non-
handhelds. Administrators can deploy in-network security
scanners for handheld devices with relatively few HTTP con-
tent signatures but scan a large majority of handheld traf-
fic without imposing an energy burden on handhelds. The
top content type for handhelds is video, accounting for 42%
of HTTP traffic, compared to 23% of non-handheld HTTP
content. The streaming video flows represent the largest,
fastest, and highest throughput flows of all handheld TCP
flows. We recommend administrators use traffic shaping, in-
stead of resource reservation, to ensure the network meets
the bandwidth demands and delay intolerance of streaming
video flows.

The remainder of this paper is organized as follows. Sec-
tion 2 presents background information on handheld device
properties impacting traffic characteristics. Details on the
data set and the methods used to isolate handheld and non-
handheld traffic are presented in Section 3, followed by an
overview of the client population in Section 4. We look at
the protocols and services used by devices and the associ-
ated flow characteristics in Section 5. Section 6 looks in
depth at HTTP and streaming media usage and the impact on
network management. Section 7 considers a “chunk-based”

Vendor Model CPU SpeedMemory O/S Connectivity
Apple iPhone 3GS600 Mhz 256 MB iPhone OS UMTS, EDGE, 802.11b/g
Apple iPod Touch 532 Mhz 256 MB iPhone OS 802.11b/g
BlackBerry Storm 528 MHz 128 MB BlackBerry OSUMTS, EDGE
HTC Nexus One 1 GHz 512 MB Android UMTS, EDGE, 802.11b/g
Palm Pixi 600 MHz 8 GB Palm webOS UMTS, 802.11b/g

Table 1: Specifications for widely-used mobile devices

content similarity system as a mechanism for reducing net-
work transfers. Lastly, we present related work in Section 8
and conclude in Section 9.

2. HANDHELD DEVICE PROPERTIES
Handheld devices have unique hardware and software prop-

erties that differentiate them from non-handhelds. Table 1
lists important hardware specifications of some well-known
and widely-used handheld devices. Below, we highlight some
properties of handhelds to provide context for our work and
identify the potential impact of these properties on handheld
traffic characteristics.

Hardware Constraints: Relative to desktops and lap-
tops, handhelds have limited processing power and mem-
ory, translating to longer computation times and potentially
longer data transfer times. Energy conservation techniques
can also affect transfer duration and throughput. Using WiFi
power save mode (PSM) is a well known technique for sav-
ing energy and has been widely studied [6, 13]. Screen size
and keyboard interface is also a limitation that impacts the
applications and services used on handhelds.

Specialized Content: Many web services offer special-
ized content for handheld devices, e.g., text-based pages with
little or no graphical components. The typically goal is to
decrease transfer sizes. Multimedia content served to hand-
held devices may also be provided at a lower resolution in
an effort to decrease the volume of traffic sent to the device.

Multiple Connectivity Methods: Handheld devices of-
ten offer multiple forms of network connectivity: 802.11a/b/g
WiFi, 3G, GSM, and other cellular protocols. In contrast,
non-handheld devices typically only use 802.11 WiFi for
network access. Since we only look at WiFi traffic from
handhelds, it is possible that our analysis misses some net-
work traffic originating from these devices. We know Apple
iPods only feature WiFi connectivity, so we isolate traffic
from these devices to determine if WiFi-only handhelds ex-
hibit different trends from handhelds that also feature other
forms of connectivity. At the same time, missing traffic
traversing over 3G and other cellular protocols is not a major
concern because our focus is on managing WiFi networks.

3. METHODOLOGY
We collect and analyze data for the University of Wisconsin-

Madison campus wireless network (UW) and the University
of Wisconsin-Madison computer science department wire-
less network (CS). From the UW network, full bi- directional
packet traces were captured from six wireless aggregation
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points, covering about 80% of the approximately 2,400 APs
on campus. Traces were captured over a period of 3 days
during April 2010, yielding 8 TB worth of data. From the
CS network, full bi-directional packet traces were captured
from all APs for a period of 3 days in June 2010, yielding 50
GB worth of data. Traces from both networks only include
traffic destined for hosts external to the wireless subnets;nei-
ther trace includes traffic sent between wireless clients.

3.1 Isolating Handheld Traffic
The packet traces contain data from all wireless clients

connected to the network—laptops, smartphones, and other
devices. Since we focus on the differences between hand-
held and non-handheld devices, we need to differentiate traf-
fic based on device type. We rely on user-agent strings in
HTTP packets for differentiation.

We consider handheld user-agents to have at least one of
the following keywords: Android, ARCHOS, BlackBerry,
CUPCAKE, FacebookTouch, iPad, iPhone, iPod, Kindle, LG,
Links, Linux armv6l, Linux armv7l, Maemo, Minimo, Mo-
bile Safari, Nokia, Opera Mini, Opera Mobi, PalmSource,
PlayStation, SAMSUNG, Symbian, SymbOS, webOS, Win-
dows CE, Windows Mobile, Zaurus.1 This keyword list is
based on common knowledge and published lists [22].

Note that it is possible for a particular device (i.e., a MAC
address) to be identified as both handheld and non-handheld.
This can occur if multiple types of devices exist behind a
router which is connected to the wireless network. Alterna-
tively, a user may “spoof” the user-agent in some browsers,
causing conflicting identifications. We exclude such devices
from both sets of traffic we analyze.

Other studies [4] have used Organizationally Unique Iden-
tifiers (OUIs) in MAC addresses to differentiate device types.
However, not all manufacturers use different OUIs for dif-
ferent device types. Apple, for example, groups all types of
devices (MacBooks, iPods, iPhones) into the same OUIs [4].
Also, OUIs can only provide hardware manufacturer identi-
fication, while user-agent strings often also contain operat-
ing system and application information.

As confirmation of our identification approach, we ver-
ify our categorization of mobile and non-mobile devices us-
ing OUIs. We found that the MAC addresses for all devices
identified as mobile are registered to manufacturers known
to make mobile devices (or components for them).

3.2 Unidentifiable Devices
Not all devices can be identified as mobile or non-mobile

using user-agent strings in HTTP packets. About 17% of
devices in the UW traces do not send any HTTP packets. To
classify these devices, we resort to using OUIs.

We use the manufacturers of devices classified by HTTP

1The keywords for non-handheld devices are: Windows 7, Win-
dows Vista, Windows XP, Windows Server, Windows NT, Intel
Mac OS X, PPC Mac OS X, MacBook, iMac, Fedora, Ubuntu,
Gentoo, SUSE, Linux x8664, Linux i686, WiiConnect.

Device Type UW CS
Handheld 5060 9
Non-handheld 22485 90
Dual-identify 113 –
Unknown 4508 13
Total 32166 112

Table 2: Client counts by device type

Handheld Vendor UW CS
Apple 4337 6
HTC 134 –
Research in Motion (BlackBerry) 173 –
Motorola 118 –
Palm 113 1
Nokia 88 1
Samsung 20 –
Other 77 1

Table 3: Handheld counts by vendor

user-agent to guide our classification of the remaining de-
vices. Two lists of manufacturers are generated (for hand-
held and non-handheld devices) based on the OUIs of al-
ready classified devices. If a manufacturer appears in both
lists, then all OUIs registered to the manufacturer are ex-
cluded from our list of classifiable OUIs. Any device whose
OUI is registered to a manufacturer in our handheld or non-
handheld list is classified accordingly. A small percentageof
devices (14% for UW and 11% for CS) remain as unknown
and are excluded from our analysis.

4. USER POPULATION
Over the 3 day capture periods, 32,166 unique clients con-

nect to the UW network and 112 unique clients connect to
the CS network. Table 2 shows the total number of clients
of each type present in the trace data. Non-handheld devices
account for the majority of clients in both networks. How-
ever, administrators from both networks provided anecdo-
tal evidence that handheld devices are much more prevalent
than in prior years, and industry and campus studies have
shown the number of handheld devices is expected to con-
tinue increasing [19]. The number of laptop users on college
campuses is also increasing (with desktop usage decreasing),
but at a less rapid rate than the growth in handheld clients.
The unique handheld characteristics we identify will become
pronounced and have a greater impact on network manage-
ment as the number of handheld clients and their network
usage increases.

Table 3 lists the number of handheld devices by manu-
facturer. We see devices from 7 primary vendors, with Ap-
ple iPods and iPhones accounting for over two-thirds of all
handhelds (85% in UW network and 66% in CS network).

4.1 Client Authentication
In both the UW and CS networks, wireless clients are re-

quired to authenticate with the network by providing user
credentials. The CS network consists of only one subnet
and SSID, but the UW network is broken into 134 subnets
each with a separate SSID. When clients move within the
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UW network, they need to re-connect and re-authenticate
to a new SSID. Other studies have already shown handheld
clients move more frequently than non-handheld clients [10,
4], and this re-authentication requirement places an addi-
tional burden on handheld clients. As the number of hand-
held devices grows, administrators should consider imple-
menting authentication mechanisms that require users to only
authenticate with the network once. Using certificate authen-
tication, instead of requiring users to enter a username and
password could further improve the handheld user experi-
ence.

Scaling of DHCP services has already occurred in most
networks as handheld clients have increased. Network ad-
ministrators from Marquette University provided anecdotal
evidence of needing to increase the IP address pool in pop-
ular areas like the campus library due to rapid growth of the
handheld client base. As handheld usage continues to grow,
administrators need to further scale authentication and client
addressing mechanisms. Other studies have also shown that
handheld devices have shorter session durations [?, 7], so
we recommend administrators shorten address assignment
and authentication validity durations as handheld usage in-
creases.

5. PROTOCOLS AND SERVICES
The protocols and services used by devices dictate the per-

formance of an enterprise wireless network. Different pro-
tocols and services respond differently to bandwidth limita-
tions and network congestion. They also contribute flows of
varying sizes, durations, and frequencies to the overall traffic
mix. As more handheld devices connect to the network, the
varying protocol and service usage of these devices changes
the mix and behavior of aggregate wireless traffic.

5.1 Network and Transport Protocols
At the highest level, we categorize traffic based on net-

work and transport layer protocols. Table 4 shows the per-
centage of traffic in packets and bytes for each type of pro-
tocol in the UW and CS traces. As expected, the majority
of traffic is TCP or UDP. The remaining traffic is IPSec—IP
traffic tunneled over a secure connection—or network con-
trol traffic (ICMP, ARP, etc.).

A major difference in protocol usage between handheld
and non-handhelddevices is the amount of UDP traffic. Non-
handheld devices use UDP for 20% of their traffic, while
handheld devices use UDP for only 1.5%. In the face of
congestion, this difference can impact network performance.
As the number of handheld devices increases, a smaller per-
centage of traffic will be UDP and more traffic will be TCP.
More TCP traffic results in devices using a fairer-share of
network bandwidth when there are large numbers of com-
peting flows. However, this increase in TCP flows also in-
creases the amount of flow state that needs to be stored on
NAT boxes, intrusion detection systems, or other network
middleboxes which rely on knowledge of TCP flow state.

Protocol UW Handhelds UW Non-handhelds
% of Packets % of Bytes % of Packets % of Bytes

UDP 5.9% 1.5% 25.7% 19.9%
TCP 92.0% 98.3% 74.0% 80.0%
IPsec 0.3% 0.05% 0.05% 0.03%
ICMP 0.1% 0.01% 0.2% 0.04%
Other (ARP, etc.) 1.5% 0.1% 0.2% 0.04%

(a) UW

Protocol CS Handhelds CS Non-handhelds
% of Packets % of Bytes % of Packets % of Bytes

UDP 4.5% 1.7% 18.4% 14.4%
TCP 93.0% 98.0% 81.4% 85.6%
IPsec – – 0.05% 0.05%
ICMP 0.1% 0.02% 0.05% 0.01%
Other (ARP, etc.) 2.3% 0.3% 0.1% 0.01%

(b) CS

Table 4: Network/Transport protocol usage

Category Transport
Protocol

Applic.
Protocol

UW
Handheld

UW Non-
Handheld

CS
Handheld

CS Non-
Handheld

Web
TCP HTTP 94.0% 74.2% 64.7% 71.8%
TCP HTTPS 3.0% 8.3% 26.4% 0.9%

Email

TCP IMAP4 0.1% ≺ – –
TCP SIMAP 1.0% 0.1% – 0.03%
TCP POP3 0.01% 0.06% – ≺

TCP SPOP 0.4% 0.3% – 0.01%
TCP SMTP ≺ 0.04% – ≺

Chat TCP IRC ≺ ≺ – –

Remote
TCP FTP ≺ ≺ – ≺

TCP SSH – ≺ – 0.05%

Enterprise
Services

TCP/UDP NFS ≺ ≺ – ≺

TCP SMB – ≺ – ≺

TCP IPP ≺ 0.01% – 0.3%
TCP LPD – 0.04% – –
TCP LDAP ≺ ≺ – ≺

TCP SQL – ≺ – –

Management

TCP/UDP DNS 0.2% 0.3% 1.5% 0.1%
TCP/UDP NetBIOS ≺ 0.03% 0.02% 0.02%
UDP NTP ≺ ≺ – ≺

UDP SNMP ≺ 0.01% – ≺

Other
TCP Other 0.2% 2.9% 5.7% 8.7%
UDP Other 1.0% 13.7% 1.7% 18.1%

Table 5: Application protocol usage by percent of bytes (≺
less than 0.01%, – none)

The flow state increase will be most prevalent in wireless-
only networks with a large percentage of handheld clients.

5.2 Application Protocols
We further categorize the mix of wireless traffic based on

application protocol using Bro Intrusion Detection System
[16]. Table 5 shows the percentage of traffic in bytes for
each type of application protocol in the UW and traces. Web
protocols (HTTP and HTTPS) account for the largest per-
centage of traffic for both handheld (97%) and non-handheld
(82%) devices. However, web usage is lower for both types
of devices in the CS network. Email protocols are the sec-
ond most popular application but account for less than 2%
of traffic for both device types. (We believe clients actually
generate more email traffic than this and attribute the low
percentages of email protocols to the common usage of web
based email.) These protocol usage observations are consis-
tent with other network measurement studies [10].
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The majority of UDP traffic for non-handheld devices can
not be identified by Bro’s dynamic protocol detection. Man-
ual categorization using port numbers and IP addresses re-
veals some of the traffic is from VPN, Symantec Systems
Center, DropBox, and Microsoft Simple Service Discovery
Protocol. However, more than 90% of the unidentified UDP
traffic is large flows, ranging from 1 MB to 20 MB in size,
whose application protocol remains unidentifiable. This traf-
fic is likely from streaming media or peer-to-peer file shar-
ing, as no traffic of this type is explicitly identified but we
expect should be present.

Handhelds do not exchange any peer-to-peer (P2P) file
sharing traffic, and non-handhelds only exchange this traf-
fic in small amounts (potentially identified as TCP or UDP
other), if at all. This low volume of P2P traffic differs from
a 2003 study [10] which attributed over 35% of traffic to
P2P applications. Low P2P usage is a good sign for network
management and performance, because traffic of this type
has been known to be difficult to control and prevent from
overtaking network capacity. Further decreases in P2P traffic
as handhelds become the most prevalent devices, translates
to more bandwidth for streaming media and other bandwidth-
intensive Internet services.

Based on the application protocols that are identified, we
observe a larger percentage of non-handheld devices using
internal enterprise services—filesystem, printing, database,
etc. These services represent a small percentage of total
application traffic (about 0.07% in total) but bring to the
forefront an important observation: non-handheld users care
more about internal services. This observation is reinforced
by the presence of an internal website (library.wisc.
edu) in the top HTTP hosts by request for non-handheld
devices (Table 10). From a management perspective, ad-
ministrators need to balance their focus on maintaining net-
work services and network performance to satisfy the needs
of non-handheld users. An increase in the number of hand-
helds requires administrators to place less emphasis on inter-
nal services and more emphasis on increasing network per-
formance.

5.3 TCP Flow Characteristics
As mentioned earlier, TCP traffic accounts for 98% of

handheld traffic. We compare the TCP flow characteris-
tics of handheld and non-handheld traffic to determineif
andhow the network dynamics will change as the network
client base becomes primarily handhelds. We look at the
flow size, duration, and rate for the downlink half of TCP
connections— data flowing from remote host to the wireless
client—since the majority of data flows in this direction. In-
complete flows (flows which do not end with aFIN or RE-
SET) are excluded from the analysis. In all cases, the distri-
butions for the both the UW and CS networks are equivalent;
we omit inclusion of the CS distributions for brevity.

A CDF of flow size in bytes is shown in Figure 1. Hand-
held devices tend to have smaller flows than non-handheld

devices: the median handheld flow size is 50 KB, compared
to a median non-handheld flow size of 100 KB. The middle
80% of handheld flows range in size from 10 KB to 1 MB,
while the middle 80% of non-handheld flows range in size
from 25 KB to 1 MB. At the lower tail, there are fewer small
non-handheld flows than handheld flows. At the upper tail,
maximum non-handheld flow size is larger (2 GB) than the
maximum handheld flow size (630 MB). The distribution of
flow sizes for WiFi-only handhelds is identical to the distri-
bution of flow sizes for all handhelds.
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Figure 1: CDF of TCP flow size (UW)

Handhelds and non-handhelds also differ in their distribu-
tion of flow duration. A CDF of flow duration in seconds is
shown in Figure 2. Handhelds have a narrower range of flow
durations than non-handhelds. The middle 80% of handheld
flows range in duration from 250 ms to 15 sec, compared to
a range of 100 ms to 75 sec for non-handhelds. The median
flow duration is approximately the same for both types of de-
vices. The lack of long flows for handhelds can be attributed
to the typically short usage sessions of handhelds reported
by Falaki [7]. Again, the distribution of flow durations is
similar for WiFi-only handhelds and all handhelds.

The flow durations for a subset of specific applications are
shown in Table 6. On average, TCP flows for web traffic are
five times shorter for handheld devices than non-handhelds.
Handhelds are served simplified versions of many web pages,
which we suspect is the cause of generally shorter TCP flows.
For email traffic, receiving protocols (IMAP, POP) have shorter
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Figure 2: CDF of TCP flow duration (UW)
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Category Transport
Protocol

Application
Protocol

Handheld Non-handheld
Avg StdDev Avg StdDev

Web
TCP HTTP 4.93 15.09 24.06 48.53
TCP HTTPS 2.42 14.62 11.60 38.14

Email

TCP IMAP4 59.33 67.85 0.69 1.91
TCP SIMAP 36.30 64.23 5.64 24.03
TCP POP3 33.06 62.41 1.46 7.69
TCP SPOP 36.50 51.98 1.95 4.82
TCP SMTP 3.63 11.45 26.56 40.63

Other
TCP Other 16.95 50.68 3.10 18.18
UDP Other 13.87 201.96 21.72 2106.98

Table 6: Application Connection Duration (UW)
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Figure 3: CDF of TCP flow rate (UW)

average TCP flows on non-handhelds, while the sending pro-
tocol (SMTP) has shorter flows on handhelds. We hypoth-
esize the discrepancy in SMTP is caused by a higher likeli-
hood of non-handheld users including attachments in emails,
thus increasing the about of data that must be transferred.

The distribution of flow rate is similar for both types of
devices. Figure 3 shows a CDF of flow rate in bytes/second.
The middle 80% of flows have a rate ranging from 10 KBps
to 500 KBps, with a median rate of 100 KBps. WiFi-only
handhelds have slightly faster flow rates than all handhelds
for the lower 60% of flows. The factors associated with flow
rate are also consistent across handheld and non-handheld
devices: The average round trip time for 90% of TCP flows
is less than 100 ms. Only 4% of flows have one or more
retransmissions due to retransmission time out, and 1% of
flows have one or more retransmissions due to fast retrans-
mit. Figure 4 shows a CDF of the average receive window.
Handheld devices have a more linear distribution of window
sizes than non-handheld devices, but the distribution is rela-
tively similar. The similarity between the handheld and non-
handheld flow rates implies both types of devices have sim-
ilar TCP stacks.

Our analysis shows that the aggregate TCP flow charac-
teristics of network traffic will remain relatively unchanged
as the handheld client population increases. Handhelds have
smaller flows and a narrower range of flow durations, but
throughput will remain consistent. From a management per-
spective, no major network configuration changes are re-
quired to maintain similar performance.
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Figure 4: Average receive window (UW)

5.4 Management Implications
Based on our analysis of the protocols and services used

by handheld devices, we make the following management
recommendations for networks with primarily handheld clients:

• Focus less on internal servicesHandheld clients do
not use most internal services like network file sys-
tems, printers, and authentication services. Most traffic
is external HTTP traffic, so clients care more about net-
work performance and the quality of Internet access.

• No concerns with peer-to-peer trafficThe bane of
many network administrators, peer-to-peer traffic is not
present in handheld communications (and has also be-
come only a small fraction of non-handheld traffic).
Instead of shaping peer-to-peer traffic, administrators
should focus on providing strong performance for the
new source of high traffic volumes: streaming media.

6. WEB TRAFFIC
Web traffic accounts for almost all handheld data (97%)

and a large fraction of non-handheld data (82%). HTTP is
used so commonly because of its wide interoperability and
ability to distribute all types of content. Web usage differs
between handheld and non-handheld devices because of dif-
ferences in the way individuals use these devices. We see
differences in the range and type of hosts being accessed
and variability in the type and length of content. We also
observe that 82% of handheld HTTP traffic is consumed by
non-browser applications, while only 10% of non-handheld
traffic is destined for other applications. Most notably, we
see a higher usage of HTTP-based streaming media services
on handhelds, where video accounts for 42% of handheld
HTTP content, compared to only 23% for non-handhelds.

Extracting information from HTTP traffic requires re-assembling
packet payloads into streams. We built a custom tool us-
ing the PCAP and NIDS libraries to read traces, reassemble
streams, and extract the necessary fields from HTTP head-
ers. Libnids is part of Network Intrusion Detection Sys-
tem [1]; we take advantage of its TCP stream reassembly
capabilities to reconstruct HTTP headers and payloads from
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% of Bytes Host Top Content Types
35.48% googlevideo.com video/mp4
18.12% pandora.com application/octet-streaming, image/jpeg
10.57% phobos.apple.comtext/plain, image/jpeg, video/m4v, audio/mp4
2.45% fbcdn.net image/jpeg, text/javascript, image/png
2.43% vo.llnwd.net video/m4v, video/mp4, audo/mpeg
1.23% m.nbc.com video/mp4, image/jpeg, text/javascript
1.17% espn.go.com text/plain, text/html, image/jpeg
1.16% video.ted.com video/mp4
0.82% gdata.youtube.comapplication/atom+xml
0.64% s3.amazonaws.comaudio/3gpp, image/jpeg, image/png

Table 7: Top handheld HTTP hosts by response size

sets of TCP packets. Incomplete streams are not reassem-
bled by NIDS so we miss the data from some HTTP streams,
but this proportion is small. As a stream is reassembled,
we extract the values of relevant HTTP fields (method, URI,
host, content-type, content-length, etc.) and keep byte and
packet statistics. Due to anonymity concerns, we only look
at HTTP traffic from the UW traces.

6.1 Hosts
HTTP hosts provide a rough understanding of the types of

services accessed by clients. We group hosts by subdomain
to cope with websites which load-balance amongst multiple
servers—i.e. we consider traffic forf500.mail.yahoo.
com andf504.mail.yahoo.com to all be associated
with the same hostmail.yahoo.com. However, using
subdomains still keeps key service information intact—i.e.
we can differentiate betweenyahoo.com andmail.yahoo.
com. Also, some web services provide special mobile ver-
sions of content to handheld devices, typically identified by
am ormobile subdomain. (In some cases we group by do-
main instead of submdomain—for examplefbcdn.net—
because load-balancing across lots of servers occurs at the
domain level.)

Table 7 lists the top HTTP hosts for handheld devices
based on the size (content-length) of the data served to the
devices. Over 35% of handheld HTTP content originates
from googlevideo.com, followed by 18% originating
from pandora.com. For each host, we also list the most
frequent content type (based on on the total content-lengths
for each type). Multimedia content is the most frequent for
eight of the top ten hosts.

The top hosts for non-handheld devices, based on con-
tent size, are listed in Table 8. The most popular host,c.
youtube.com, accounts for 11% of the data, followed
by pandora.com which accounts for 7% of the data. In
total, the top 10 non-handheld hosts account for 42% of
non-handheld data, while the top 10 handheld hosts account
for 74% of handheld data. These percentages indicate a
much greater diversity in hosts for non-handheld devices. In
addition, non-handheld devices are more likely to receive
content from hosts providing more than text or multimedia
content. A Microsoft site hosting application downloads,
dlservice.microsoft.com, appears in the top non-

% Bytes Host Top Content Types
11.45% c.youtube.com video/flv, video/mp4
7.00% pandora.com application/octet-stream, image/jpeg, audio/mpeg
6.63% fbcdn.net image/jpeg, image/png, text/javascript
4.63% dlservice.microsoft.comapplication/octet-stream
2.89% vo.llnwd.net video/wmv, audio/mp4
2.80% stileproject.com application/octet-stream, image/jpeg, video/mp4
2.53% com.edgesuite.net video/wmv, audio/wma, application/octet-stream
1.69% phobos.apple.com text/plain, audio/mp4, image/png
1.51% www.facebook.com text/html, text/javascript
0.94% cdn.turner.com text/javascript, image/jpeg, video/flv

Table 8: Top non-handheld HTTP hosts by response size

% of Requests Host Top Content Types
10.58% fbcdn.net image/jpeg, text.javascript, image/png
4.26% phobos.apple.comimage/png, image/jpeg, text/plain
3.10% espn.go.com text/html, image/gif, image/jpeg, image/png
2.75% facebook.com text/plain, text/html
2.74% googlevideo.com video/mp4
2.56% www.apple.com text/html
1.30% ad.doubleclick.nettext/javascript, text/html, video/ms-asf, image/gif
1.26% i.ytimg.com image/jpeg
1.23% www.google.com text/html, text/javascript
1.18% itunes.apple.com text/xml

Table 9: Top handheld HTTP hosts by request volume

handheld hosts withapplication/octet-streamas the primary
content type.

We also look at the top hosts based on number of HTTP
requests. Table 9 lists the top hosts for handheld devices
and Table 10 for non-handheld devices. The top 10 hand-
held hosts account for 30% of handheld HTTP requests and
non-handheld hosts account for 32% of non-handheld re-
quests. There is a greater diversity of content in the top
hosts by number of requests: social networking, streaming
media, advertising, search, and news. Only one stream-
ing media host is in the top hosts for handheld devices and
none are in the top hosts for non-handheld devices. Also,
the non-handheld top hosts includes an internal UW web-
site,library.wisc.edu, re-enforcing our earlier obser-
vation (Section 5.2) that non-handhelds use internal services
more than handhelds.

6.2 Content Type and Length
The type of HTTP content access by devices further char-

acterizes the services used. Table 11 lists the top HTTP con-

% of Requests Host Top Content Types
15.36% fbcdn.net image/jpeg, image/png, text/javascript
5.70% www.facebook.com text/plain, text/javascript, text/html
2.92% www.google.com text/html, text/javascript, application/json
1.84% ad.doubleclick.net text/javascript, text/html, image/gif
1.24% cdn.turner.com image/jpeg, image/gif, text/javascript
1.22% library.wisc.edu text/html, image/gif, text/javascript
1.11% g.doubleclick.net text/html, text/javascript, image/gif
1.08% graphics8.nytimes.com image/jpeg, image/gif, text/javascript
1.05% www.google-analytics.comimage/gif, text/javscript
0.90% espn.go.com image/gif, text/html, image/jpeg

Table 10: Top non-handheld HTTP hosts by request volume

7



Protocol Handheld Non-handheld
Application 19.73% 22.1%
atom+xml, rss 0.97% 0.26%
binary 0.35% 0.02%
compress, gzip, tar, zip 0.64% 0.74%
json 0.23% 0.18%
octet-stream 16.93% 11.41%
pdf 0.17% 0.74%
shockwave-flash 0% 6.71%
Audio 3.43% 5.59%
3gpp 0.54% 0%
mp4 0.23% 0.80%
mpeg 2.56% 4.45%
wma 0.05% 0.29%
Image 17.41% 29.39%
gif 1.64% 2.85%
jpeg 12.81% 22.75%
png 2.95% 3.69%
Text 16.85% 18.92%
css 0.65% 1.36%
html 2.39% 7.38%
javascript 2.81% 6.47%
plain 10.11% 2.86%
xml 0.87% 0.83%
Video 42.55% 23.35%
3gpp 0.79% 0%
flv 0.01% 18.62%
mp4 41.40% 2.30%
quicktime 0.28% 0.41%
wmv 0% 1.99%

Table 11: HTTP content-types by content-length (UW)

tent types, based on content length, for the UW traces. We
group the types based on the top-level category—application,
audio, image, text, and video—and list the top types for
each category. The largest volume of handheld content is
video (42%), while images are the top content type for non-
handheld devices (29%).

Application HTTP content is data associated with specific
applications, for example documents, compressed files, or
streaming media control information. For both types of de-
vices,octet-stream—a generic binary stream of data which
an application can interpret as desired—is the most common,
accounting for 86% of handheld and 51% of non-handheld
application type data. Some streaming media sites, for ex-
ample Pandora, use theoctet-streamcontent type. The aver-
ageoctet-streamis 713 KB for handhelds (std dev 882 KB)
and 189 KB for non-handhelds (std dev 658 KB) The second
most common for handhelds is RSS feeds (average length of
29 KB), while Shockwave Flash is the second most common
for non-handhelds (average length of 38 KB). No handhelds
access Shockwave Flash content because there was no Flash
support on these devices until very recently.

The diversity of application content types is greater on
non-handheld devices than handhelds. Over 185 different
types of application content are accessed by non-handhelds
compared to only 58 different types for handhelds. This vari-
ety in types results from the greater diversity of applications
running on non-handheld devices.

Stemming from this observation, we envision in-network
security scanners as a viable service to deploy in networks
with large proportions of handhelds. The energy and per-

formance cost of running a malware scanner on a handheld
is prohibitive. In contrast, a middlebox could scan a large
majority of handheld traffic for malware with relatively few
HTTP content signatures.

The content for regular web browsing falls mostly into the
image and text content types. Three image types—gif, jpeg,
and png—make up the majority of image content. JPEG im-
ages are the largest with an average length of 13 KB on hand-
helds and 11 KB on non-handhelds. HTML, CSS, JavaScript
and XML are used for the web page itself. For both types
of devices these text types average 3-7 KB in length. Over
two-thirds of the text content received by handheld devices
is identified asplain text. This content is access by non-
browser-based applications retrieving data from a web ser-
vice, for example a news or sports application.

The remaining two top-level categories of content are mul-
timedia traffic, namely audio and video. Multimedia ac-
counts for 46% of handheld content and 29% of non-handheld
content. In particular, video accounts for 93% of multime-
dia traffic in the handheld case and 80% in the non-handheld
case. We examine video traffic in greater detail next.

6.3 Streaming Video
Streaming video is a major source of traffic for handheld

devices. Video content accounts for 40% of all handheld
traffic, compared to only 17% of all non-handheld traffic.
Large volumes of multimedia streams bring forth interesting
issues because of their size and sensitivity to delay.

6.3.1 Video Flows

We compare the flow characteristics of handheld stream-
ing video flows to all handheld flows to better understand
streaming media’s impact on the network. Figure 5 shows
the flow size in bytes for handheld TCP flows (excluding
incomplete flows). As expected, handheld video flows are
large compared to overall handheld traffic: Eighty percent
of video flows are greater than 50 KB in size, whereas 50KB
is the median flow size among all handheld flows. Nearly
20% of video flows are larger than 1 MB in size. The me-
dian flow size is 400KB and the average flow size is 305 KB
for handheld devices. Also, we note that video flows in non-
handhelds are even larger: The median flow size is nearly an
order or magnitude higher (3MB).

The flow duration for handheld TCP flows is shown in
Figure 6. Video flows for handhelds appear to be of a short
duration. Eighty percent of video flows are less than 1 sec-
ond in duration, with a median video flow duration of 0.5
seconds. The median durations for all handheld flows and
for non-handheld video flows are significantly higher, at 5
and 50s, respectively. We expect the short flow durations re-
sult from handhelds’ goal of conserving energy by receiving
data over wireless in short periods of time.

Based on the short duration of video flows, we expect high
throughput rates for handheld video flows. Figure 7 shows
the rate of handheld TCP flows. Eighty percent of video
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flows have a rate faster than 100KBps (0.8 Mbps), with a
median flow rate of 250 KBps (2 Mbps). In contrast, the
media flow rate for all handheld flows and for non-handheld
video flows is roughly 75 KBps (0.6Mbps).

On the whole, handheld video flows are long in size (al-
though not as long as non-handheld video flows), signifi-
cantly short in duration, and achieve high end-to-end through-
puts which are comparable, if not slightly higher than non-
handheld video flows.

6.3.2 Video Format

Video content streamed to handheld devices differs from
video streamed to non-handheld devices because of differ-
ences in decoding capabilities. Most streaming video ser-
vices use Adobe Flash, but Flash support did not exist on
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handheld devices until very recently [3]. Instead, handheld
devices receive video content that is encoded using MPEG
4. Table 11 shows thatmp4(MPEG 4) is the top video type
for handhelds andflv (Flash video) is the most common for
non-handhelds. Video streaming sites like YouTube serve
two versions of videos: one encoded as mp4 and the other
encoded as flv.

To better understand the differences in the video content
served to the two different types of devices, we watch the
same 3 minute video [2] from YouTube on both a Google
Android HTC Dream smartphone and a Lenovo X201 lap-
top. On the phone, we use the standalone YouTube applica-
tion and on the laptop we use Mozilla Firefox. The handheld
device receives 7362 KBvideo/mp4; the non-handheld
device receives 11792 KBvideo/flv. Both videos have
the same resolution of 320 x 240, but the mp4 version is en-
coded at 30 fps (frames per second) and 200 kbps, while the
flash version is encoded at 25 fps and 231 kbps. The flash
video is of slightly higher quality, with more bits per second,
but both versions are comparable. The audio is encoded in
stereo at 44100 Hz and 128 kbps for the mp4 version and
mono at 22050 Hz and 64 kbps for the flv version. The mp4
audio is higher quality than the Flash audio, but both ver-
sions are closely comparable. We conclude the video served
to handheld devices is of approximately equal quality, but
the content is smaller in size—the handheld version is about
62% of the size of the non-handheld version.

The size of both handheld and non-handheld video flows
are relatively small compared to the size of the sample YouTube
video. The average handheld video flow size is 305 KB,
much less than the 7.4 MB size of the 3 minute video. This
size gap implies individuals watch only a small fraction (e.g.,
the initial few seconds) of most videos on their handhelds.

6.4 Management Implications
Our analysis of HTTP traffic yields the following man-

agement implications for wireless networks with a primarily
handheld client base:

• Deploy in-network malware scannersThe majority
of handheld traffic (93%) is HTTP and consists of less
than 100 different content types. Deploying a mal-
ware scanner as a middlebox requires knowledge of a
limited number of content types, yet can provide rela-
tively high coverage of handheld data. It also avoids
the energy and performance penalties of running an
anti-malware application directly on handhelds.

• Use traffic shaping for suitable streaming video per-
formanceAlmost half of all handheld traffic is stream-
ing video. This content is sensitive to delay and re-
quires sufficient bandwidth to transfer data in a rea-
sonable period of time. Quality of service and other
forms of resource reservation are not scalable in net-
works where a large percentage of traffic is from mul-
timedia streams. Instead, administrators need to use
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traffic shaping or admission control to ensure sufficient
resources are available to meet the streaming media
demands of handheld devices. However, designing ap-
propriate traffic shapers and admission controllers may
not be easy because of the ephemeral nature (i.e., short
duration) of the video flows.

7. CONTENT SIMILARITY
In this section, we examine the similarity in the content

perused by mobile smartphone users and compare it against
non-handheld users. We evaluate a “chunk-based” content
similarity system, akin to DOT [20], SET [17], EndRE [5]
and LBFS [15]: we first divide the payloads of packets ex-
changed by users into chunks using value sampling [20]; the
sizes of the chunks range between 32B and 64B. We then
identify if the chunks have appeared in an earlier accesses.
Unless otherwise specified, we assume that a total of 2GB
worth of chunks are stored across all users, as done in prior
systems [5].

This analysis helps us estimate the benefit of employing
content similarity suppression schemes which eliminate du-
plicate chunks from network transfers by serving them from
a local cache [8, 5, 20, 17]. Such schemes help improve
both the end-to-end latency as well as transfer throughput
experienced by users, and they can also help save mobile
battery life by conserving network transmissions. Chunk-
based schemes in particular are more effective than object
caching schemes such as Web caches as they are known
to identify more duplicates, e.g., sub-object duplicates,un-
cacheable content etc. Thus, our analysis places an upper
bound on the effectiveness of using caching and similarity
suppression.

In performing this study, we identify two types of similar-
ity: that found in content accessed by the same user, which
we refer to as “intra-user” similarity, and that found in con-
tent accessed by a different user in the network, which we
refer to as “inter-user” similarity. The former can be ex-
ploited much more easily, by deploying caches close to the
users, such as per-user or per-AP caches. In order to exploit
the latter, the network admin may have to employ schemes
for issuing cross-cache queries across per-user or per-AP
caches, or maintaining a single larger cache that aggregates
content accessed by all users. Furthermore, if intra-user re-
dundancy dominates then partial deployment of per-user or
per-AP caches will result in partial benefits.

In Figure 8, we show the extent of intra- and inter-user
content similarity observed over every 1 million packets worth
of handheld and non-handheld traffic. The traces are 0.8-
2GB in size. We measure content similarity as the ratio of
similar bytes to all bytes in the 1 million-packet trace sub-
set. The graph plots a CDF of average redundancy of differ-
ent types observed per trace.

The graph shows that content similarity varies across dif-
ferent traces (and, thus, over time) and across similarity types.
First, we observe a greater amount of similarity in hand-
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held traces than in non-handheld traces. Second, similar-
ity due to inter-user matches is quite small: less than 2%
for more than 95% of both handheld and non-handheld trace
subsets. Third, we observe that in more than 40% of the
non-handheld trace subsets, and more than 70% of the hand-
held device trace subsets,≥ 8% of the similar bytes are due
to intra-user matches. In some cases, we observed upto 20-
25% intra-user similarity for both kind of traces. Finally,the
extent of intra-user similarity is greater in the case of hand-
helds than in the case of non-handhelds.

Given that the dominant fraction of similar bytes belonged
to intra-user traffic, we further delve intro intra-user simi-
larity. In particular, we explore the efficacy of deploying
per device caches and the cache size configuration issues
therein. We split the handheld traffic on a per device basis
and study the effect of different dictionary sizes on amount
of similarity identified per device.

Figure 9 shows the CDF of similarity across top 100 de-
vices by traffic volume for different dictionary sizes. First,
we observe that almost 80% of users have less than 20%
similarity with their own traffic. However, for certain users,
the similarity proportion was much higher (more than 50%).
Second, we observe that most of the similarities can be iden-
tified by using only 50 MB cache; Larger cache sizes ex-
hibit diminishing returns in the amount of similarity they
can identify. These two observations imply that partial de-
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ployment of small per-device caches can result in significant
benefits.

Since our chunk-based analysis upper bounds the similar-
ity that can be identified by object caching approaches, it is
safe to conclude from our analysis that even if object level
caches were employed:

• It is better to employ per device, or per-AP, caches
as most matches are intra-user, and per-device caches
care simpler and can help provide partial deployment
benefits.

• Small caches, of roughly 50MB per device, suffice in
practice.

8. RELATED WORK
Our work complements and extends prior studies of cam-

pus wireless networks. Some of these focussed on PDA and
smartphone usage. We discuss these studies next.

Multiple measurement studies have analyzed traffic pat-
terns in campus wireless network. Hederson et. al identify
session and application trends at Dartmouth College and ob-
serve how usage evolved four years after the network’s ini-
tial deployment [10]. Wireless AP workloads at Darthmouth
are compared to the University of North Carolina at Chapel
Hill by Hernandez-Campos and Papadopouli [11]. Lastly,
McNett and Voelker study the wireless access and mobility
patterns of students using PDAs at the University of Cali-
fornia, San Diego [14]. While all of these studies focus on
campus wireless networks none explore in detail the applica-
tions used specifically by mobile device users and the traffic
characteristics thereof. In addition, mobile device usageis a
rapidly changing field and trends observed five years ago are
different than today’s mobile device usage.

More recent studies have focused on mobile device usage
in public Wi-Fi and 3G networks. Application, session, and
mobility trends in the Google Wi-Fi network in Mountain
View, CA were studied in 2008 [4]. The connections be-
tween geo-location and usage of specific types of web ser-
vices was studied in an urban 3G network in 2009 [21]. The
3G study is most similar to our work, but only considers
HTTP traffic. While we observe this is a large portion of
mobile device traffic, it leaves out the other applications mo-
bile users utilize.

Application usage on mobile devices has also been studied
outside of the context of wireless networks. Usage logs from
255 smartphone users were analyzed by Falaki et. al [7]. In-
terestingly, communication applications account for 49% of
usage and browsing accounts for 12% of usage, resulting
in at least 60% of application usage generating network traf-
fic. Mobile device application usage has implications for hu-
man computer interaction resulting in multiple log- or diary-
based studies [18, 9].

9. CONCLUSION

Handheld devices have become a significant fraction of
the client base in campus wireless networks, and their usage
is expected to continuing growing. Using traces from two
wireless networks at the University of Wisconsin-Madison,
we identify differences in the traffic characteristics of hand-
held and non-handheld devices which have implications for
network management. We observe that handheld devices
make less use of internal services and are more concerned
with the performance and quality of Internet access. Over
98% of handheld traffic is web traffic, and handheld devices
do not send any peer-to-peer traffic, avoiding the bane of
many network administrators. The HTTP communications
of handhelds are spread across a smaller number of hosts and
content types than non-handhelds, paving the way for easy
implementation of in-network security scanners. Forty per-
cent of all handheld traffic is HTTP-based streaming media,
prompting administrators to ensure adequate bandwidth is
available by shaping other network traffic. Lastly, adminis-
trators may consider employing ”chunk-based” content dis-
tribution systems to improve caching and decrease handheld
network transmissions. As handheld usage continues to in-
crease, administrators will need to change the way they man-
age wireless networks and deploy new services to meet the
unique demands of these devices.
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