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ABSTRACT rity, and guide administrators in supporting and deploying

Smartphones, portable music players, and other handheld€W Middleboxes and network services. To the best of our
devices have become a major computing platform. Wher- knowledge, these issues have not been considered in prior

ever users go, they utilize 3G and WiFi connectivity to ac- WOrk- We ignore low-level wireless transmission, connec-
cess a wide array of Internet services. The small, mobile tivity, and mobility issues as these have already been well

nature of these devices results in a unique mix of applinatio studied [4, 10’_14]' . . . .

and network usage. As more handheld devices connect to Undgrstandlng these issues is both timely and important:
campus, enterprise, and community WiFi networks, admin- According to a 2009 EODUCAUSE study of technology on
istrators need to adjust their network’s configuration tpeeo ~ ¢0ll€ge campuses, 51% of undergraduates own an Internet-

with the unique traffic characteristics of handhelds. Other c@Pable handheld device and 12% plan to purchase a de-

studies have used WiFi and 3G wireless traces to analyze!ic€ Within the next 12 months [19]. In addition, a recent
session, mobility, and performance characteristics fadha ~ PEW Study comparing 2007 and 2009 wireless Internet us-

held devices. We complement these studies by examining29€ @mong Americans found a 73% increase in the rate users
how the content and flow characteristics of handheld traf- Went online with their handhelds [12]. While the number of

fic elicit network management changes. We analyze packet"°n-handheld portable devices, such as laptops, is also gro
traces from the University of Wisconsin-Madison campus Ng the number of handheld devices is growing at a much
and computer science wireless networks, with 3 days of traf- f@Ster pace.

fic for over 32,000 unique devices. Trends for handheld de- Although many handheld users have 3G data plans from a
vices include a lower usage of UDP, a high volume of HTTP cellular carrier, 802._11 WiFi access is still a preferret_dam _
traffic, and a greater proportion of video traffic. We sum- net access mechanism, when available, because of |'Fs _hlgher
marize key implications for network management and sug- 2@ndwidth, lower latency, and lower energy usage. WiFi net-
gest configuration changes to maintain suitable network per WOTkS in campuses, enterprises, and communities are seeing

formance as handheld devices become the primary users offcréasing numbers of handhelds as the popularity of these
wireless networks. devices continues to grow.

The traffic characteristics of WiFi networks change as hand-
1. INTRODUCTION held devices represent a larger proportion of clients. Com-
. . _ . pared to wireless desktop and laptop users, handheld users
Handheld dewc_es are quickly augmenting, and in some access a different mix of Internet services and content. The
cases even replacing, laptops as the computing and Internegma" screen size and limited resources of handheld devices

pelrusal platform of c?o;]ce for manty Elsers on thel 9o. Indngd- make some applications infeasible to run, while other appli
uals are using smartphones, portable music players, € OOI%ations are more appropriate for the “take anywhere” nature
readers, and other handhelds to access a variety of Interneaf these devices. Applications like web browsers and email

aplphf[:t?tlons and data. Kt derstand what Id h clients are used on both handheld and non-handheld devices,
?h IS pat|)oer, \;ve Ss.? ho udnh e;(rjsdan_ w 3 wou b aPPeN it service providers tailor the content differently foeth
as the number of mobrie handneld deviCes UeVICES DECOMES, 1 - |4sses of devices. Furthermore, the browser interface

comparable to, or exceeds, the number of laptops on CamMPU%n handheld devices in itself places limitations on the eang

wireless networks. In particular, we wish to understanat of both Internet-based and local network-based servias th

newkapprogchtes_must betrc]ievelopt_ed to m?na%e_l cimp(;Jhs Tdebsers can access. Thus, the network traffic of handheld de-
WOTKS In order to Improve € experience ol mobrie handneld ;.o jq likely to differ in several crucial respects fronrmRo

i ? . .
users, assuming current handheld access pattems hold" handheld devices, e.qg., in terms of flow lengths, protocol us

.Wg tf)ocmr(s 0(;1 |ssudesfpertta|n||?%to tze mgnagzm(alnt g;theage, access to services, the prevalence and nature of multi-
wired backends, anc of NEwork-based Services deployessiCr o i, content, and temporal and spatial locality of content

the backend. The characteristics of handheld traffic inform
access.
the management of the network for performance and secu-



We use traces of network traffic gathered at the University [Vendor _[Model __|CPU SpeedMemory |O/S Connectivity
. . . . . Apple iPhone 3G$600 Mhz |256 MB [iPhone OS UMTS, EDGE, 802.11b/gy
of Wisconsin-Madison from two independently-managed multappie iPod Touch|532 Mhz  |256 MB |iPhone OS  |802.11big
AP wireless networks over a 3 day period to |dent|fy how |BlackBerry Storm 528 MHz (128 MB |BlackBerry O3UMTS, EDGE
. . ' . HTC Nexus One|1 GHz 512 MB | Android UMTS, EDGE, 802.11b/g
handheld network traffic differs from the traffic characeri Palm Pixi 600MHz |[8GB |Palm webOS |UMTS, 802.11b/g
tics of non-handheld devices. The traces contain over 82,00
unique clients, with about 15% of these being handhelds. Table 1: Specifications for widely-used mobile devices

We examine the traffic patterns, protocols and content of the

transport and application layer traffic associated withdhan  content similarity system as a mechanism for reducing net-

helds. Our goal is to identify network management changes york transfers. Lastly, we present related work in Section 8
stemming from our observations, assuming these patterns re gnd conclude in Section 9.

main the same but the number of handheld users grows.

Our key findings can be summarized as follows. The ma- 2. HANDHELD DEVICE PROPERTIES
jority of handheld traffic (97%) is web, with small amounts

of email traffic. In contrast, 82% of non-handheld traffic is ~ Handheld devices have unique hardware and software prop-
web, with miscellaneous UDP traffic (14%) and internal ser- erties that differentiate them from non-handhelds. Table 1
vices accounting for the remaining share. As handheld IOOp_Ilsts important hardware specn_‘u:atlons of somelwe!l-known
ulations increase, administrators should focus less on pro @ndwidely-used handheld devices. Below, we highlightsome
viding internal services and instead focus on the quality of Properties of handhelds to provide context for our work and
Internet access. In terms of TCP flow characteristics, hand-identify the potential impact of these properties on haitihe
helds tend to have smaller flows and a narrower range of raffic characteristics.

flows durations. However, both types of devices have similar  Hardware Constraints: Relative to desktops and lap-
flow rates, with a median rate of 100 KBps. The similarity tOPS, handhelds have limited processing power and mem-

in flow rates for handhelds and non-handhelds implies that OTY. translating to longer computation times and poteiytial

the aggregate network throughput is unlikely to change aslonger data transfer times. Energy conservation techsique
handheld usage increases. can also affect transfer duration and throughput. UsingiWiF

We look in-depth at HTTP traffic because it accounts for POWer save mode (PSM) is a well known technique for sav-
such a large share of traffic for both types of devices. Hand- N9 €nergy and has been widely studied [6, 13]. Screen size
held devices access content from a narrower range of host&nd keyboard interface is also a limitation that impacts the
than non-handheld devices; the top ten handheld hosts ac@PPplications and services used on handhelds. _
count for 74% of handheld HTTP content, while the top ~ SPecialized Content: Many web services offer special-
hosts for non-handhelds only account for 42% of non-hantihe|2€d contentfor handheld devices, e.g., text-based paigfes w
content. Less than 100 different types of content are ac- little or no graphical components. The typically goal is to
cessed by handhelds, compared to over 275 types for nondecrease transfer sizes. Multimedia content served to-hand
handhelds. Administrators can deploy in-network security N€ld devices may also be provided at a lower resolution in
scanners for handheld devices with relatively few HTTP con- @n effort to decrease the volume of traffic sent to the device.
tent signatures but scan a large majority of handheld traf- Multiple Connectivity Methods: Handheld devices of-
fic without imposing an energy burden on handhelds. The ten foer multiple forms of network connectivity: 802.1hayf
top content type for handhelds is video, accounting for 429 WiFi, 3G, GSM, and other cellular protocols. In contrast,
of HTTP traffic, compared to 23% of non-handheld HTTP Non-handheld devices typically only use 802.11 WiFi for
content. The streaming video flows represent the largest,Network access. Since we only look at WiFi traffic from
fastest, and highest throughput flows of all handheld Tcp handhelds, it is possible that our analysis misses some net-
flows. We recommend administrators use traffic shaping, in- Work traffic originating from these devices. We know Apple
stead of resource reservation, to ensure the network meetdP0ds only feature WiFi connectivity, so we isolate traffic
the bandwidth demands and delay intolerance of streamingfTOm these devices to determine if WiFi-only handhelds ex-
video flows. hibit different trends from handhelds that also featurespth

The remainder of this paper is organized as follows. Sec- forms of connectivity. At the same time, missing traffic
tion 2 presents background information on handheld device traversing over 3G and other cellular protocols is not a majo
properties impacting traffic characteristics. Details ba t ~ Concern because our focus is on managing WiFi networks.
data set and the methods used to isolate handheld and non-
handheld traffic are presented in Section 3, followed by an 3. METHODOLOGY

overview of the client population in Section 4. We look at e collect and analyze data for the University of Wisconsin-
the protocols and services used by devices and the associmadison campus wireless network (UW) and the University
ated flow characteristics in Section 5. Section 6 looks in of Wisconsin-Madison computer science department wire-
depth at HTTP and streaming media usage and the impact oness network (CS). From the UW network, full bi- directional
network management. Section 7 considers a “chunk-based’packet traces were captured from six wireless aggregation




points, covering about 80% of the approximately 2,400 APs Device Type il e
on campus. Traces were captured over a period of 3 days Non-handnell 22485 90
during April 2010, yielding 8 TB worth of data. From the BEELfﬁ:UW 42%)2 =
CS network, full bi-directional packet traces were capdure Total 35166 112
from all APs for a period of 3 days in June 2010, yielding 50
GB worth of data. Traces from both networks only include Table 2: Client counts by device type
traffic destined for hosts external to the wireless submets; Handheid Vendor oW oS
ther trace includes traffic sent between wireless clients. Apple 4337 6
HTC 134 -
3.1 Isolating Handheld Traffic Research n Motion (BlackBery) 173 -
The packet traces contain data from all wireless clients Ez'lz‘a U :
connected to the network—Ilaptops, smartphones, and other Samsung 20 -
devices. Since we focus on the differences between hand- Other ” 1

held and non-handheld devices, we need to differentidte tra
fic based on device type. We rely on user-agent strings in
HTTP packets for differentiation.

We consider handheld user-agents to have at least one of/Ser-agent to guide our classification of the remaining de-
the following keywords: Android, ARCHOS, BlackBerry, vices. Two lists of manufacturers are generated (for hand-
CUPCAKE, FacebookTouch, iPad, iPhone, iPod, Kindle, LG, held and non-handheld devices) based on the OUIs of al-
Links, Linux armvel, Linux armv7!, Maemo, Minimo, Mo-  ready classified devices. If a manufacturer appears in both
bile Safari, Nokia, Opera Mini, Opera Mobi, PalmSource, lists, then all OUIs registered to the manufacturer are ex-
PlayStation, SAMSUNG, Symbian, SymbOS, webOS, Win- cluded from our list of classifiable OUIls. Any device whose
dows CE, Windows Mobile, Zaurds.This keyword list is OUl is registered to a manufacturer in our handheld or non-
based on common knowledge and published lists [22]. handheld list is classified accordingly. A small percentafge

Note that it is possible for a particular device (i.e., a MAC devices (14% for UW and 11% for CS) remain as unknown
address) to be identified as both handheld and non-handheldand are excluded from our analysis.

This can occur if multiple types of devices exist behind a

router which is connected to the wireless network. Alterna- 4. USER POPULATION

tively, a user may “spoof” the user-agent in some browsers,  Over the 3 day capture periods, 32,166 unique clients con-
causing conflicting identifications. We exclude such device nect to the UW network and 112 unique clients connect to
from both sets of traffic we analyze. the CS network. Table 2 shows the total number of clients

Other studies [4] have used Organizationally Unique Iden- of each type present in the trace data. Non-handheld devices
tifiers (OUls) in MAC addresses to differentiate device ype  account for the majority of clients in both networks. How-
However, not all manufacturers use different OUIs for dif- ever, administrators from both networks provided anecdo-
ferent device types. Apple, for example, groups all types of tal evidence that handheld devices are much more prevalent
devices (MacBooks, iPods, iPhones) into the same OUIs [4]. than in prior years, and industry and campus studies have
Also, OUls can only provide hardware manufacturer identi- shown the number of handheld devices is expected to con-
fication, while user-agent strings often also contain opera tinue increasing [19]. The number of laptop users on college
ing system and application information. campuses is also increasing (with desktop usage decrgasing

As confirmation of our identification approach, we ver- but at a less rapid rate than the growth in handheld clients.
ify our categorization of mobile and non-mobile devices us- The unique handheld characteristics we identify will beeom
ing OUls. We found that the MAC addresses for all devices pronounced and have a greater impact on network manage-
identified as mobile are registered to manufacturers known ment as the number of handheld clients and their network
to make mobile devices (or components for them). usage increases.

. - . Table 3 lists the number of handheld devices by manu-
3.2 Unidentifiable Devices facturer. We see devices from 7 primary vendors, with Ap-

Not all devices can be identified as mobile or non-mobile ple iPods and iPhones accounting for over two-thirds of all
using user-agent strings in HTTP packets. About 17% of handhelds (85% in UW network and 66% in CS network).
devices in the UW traces do not send any HTTP packets. To . ..
classify these devices, we resort to using OUIs. 4.1 Client Authentication

We use the manufacturers of devices classified by HTTP  In both the UW and CS networks, wireless clients are re-
1The keywords for non-handheld devices are: Windows 7, Win- quired t_o authenticate with the netv_vork by providing user
dows Vista, Windows XP, Windows Server. Windows NT, Intel credentials. The CS network consists of only one subnet
Mac OS X, PPC Mac OS X, MacBook, iMac, Fedora, Ubuntu, and SSID, but the UW network is broken into 134 subnets
Gentoo, SUSE, Linux x864, Linux i686, WiiConnect. each with a separate SSID. When clients move within the

Table 3: Handheld counts by vendor




UW Handhelds UW Non-handhelds
% of Packets|% of Bytes|% of Packets[% of Bytes

UW network, they need to re-connect and re-authenticate Protocol

to a new SSID. Other studies have already shown handheld [Gop 5.9% 1.5%) 2579 19.9%
i . i TCP 92,00  98.3% 740%  80.0%
clients move more freqqent_ly than non handheld clients [10_ Pocc 031 0.0500 0054 00304
4], and this re-authentication requirement places an addi- ICMP 0.1%  0.01% 0.2%  0.04%
tional burden on handheld clients. As the number of hand- ~ [Other (ARP, etc. 1.5%  0.1% 02%  0.04%
held devices grows, administrators should consider imple- () UW
i i H H i CS Handhelds CS Non-handhelds
mentmg authep'ucauon mechanisms thgt require userdyo on Protocol Ve T Packet % of By eS| 76 of Packes| % oT By tes
authenticate with the network once. Using certificate authe UDP 5% 1.7%) 84% 1449
tication, instead of requiring users to enter a username and | [P 93.0%  98.0% it B
password could further improve the handheld user experi- ICMP 0.1%  0.02% 0.05%4  0.01%
ence. Other (ARP, etc 2.3% 0.3% 0.1%  0.01%
Scaling of DHCP services has already occurred in most (b)CS
networks as handheld clients have increased. Network ad-
ministrators from Marquette University provided anecdlota Table 4: Network/Transport protocol usage
evidence of needing to increase the IP address pool in pop-
ular areas like the campus library due to rapid growth of the  zrsar—TTansporAppic: W OW Nom- S CS NoR
handheld client base. As handheld usage continues to grow, Protocol |Protocol||Handheld|Handheld || Handheld| Handheld
e : : : TCP HTTP 94.0% 74.2% 64.7% 71.8%
adm|n|st_rators need_to further scale a_uthentlcat|on aendtcl Web b HAR 200 830l 2649 0.99
addressing mechanisms. Other studies have also shown thaf TCP MAPA 0.1% = - -
H : : TCP SIMAP 1.0%) 0.1%) 0.03%
handheld devices ha_ve_ shorter session durati®ng][ S0 Email ToP POP3 00194 0.0694 - ¥
we recommend administrators shorten address assignment TCP SPOP 0.4%  0.3% -| 0.01%
. . T . : TCP SMTP < 0.04% - <
and authentication validity durations as handheld usage in | — e—tme = = = al
creases. TCP |FTP =< = = =
Remote  |rcp  |ssh - < - 0.059
TCP/UDANFS =
5. PROTOCOLS AND SERVICES bt il i D _ D
. . . Enterprise [TCP IPP < 0.01%| - 0.3%)
The protocols and services used by devices dl_ctate the per{sewices |ToP  |LPD 2| 0,049 - -
formance of an enterprise wireless network. Different pro- %E Iégﬁl\_P < < - <
. . . . . _ _< — —
tpcols and services respor_1d differently to banQW|dth Bnit TCP/USHDNS 003 TS 0%
tions and network congestion. They also contribute flows of TCP/UDP{NetBIOY <| 003%| 0020 0.029%
. X A X ManagemertUDP NTP < ~ ” =
varying sizes, durations, anq frequencies to the ovesdfidr UDP  |Snmp 2l o019 - D)
mix. As more handheld devices connect to the network, the |5, TCP Other 0.2% 2.9% 5.7% 8.7%
UDP__ |Other 109 137%| 179  18.1%

varying protocol and service usage of these devices change
the mix and behavior of aggregate wireless traffic.

5.1 Network and Transport Protocols Table 5: Application protocol usage by percent of bytes (

, , , less than 0.01%-nong
At the highest level, we categorize traffic based on net-

work and transport layer protocols. Table 4 shows the per-
centage of traffic in packets and bytes for each type of pro- The flow state increase will be most prevalent in wireless-
tocol in the UW and CS traces. As expected, the majority only networks with a large percentage of handheld clients.
of traffic is TCP or UDP. The remaining traffic is IPSec—IP .
traffic tunneled over a secure connection—or network con- 5.2 Application Protocols
trol traffic ICMP, ARP, etc.). We further categorize the mix of wireless traffic based on
A major difference in protocol usage between handheld application protocol using Bro Intrusion Detection System
and non-handheld devices is the amount of UDP traffic. Non-[16]. Table 5 shows the percentage of traffic in bytes for
handheld devices use UDP for 20% of their traffic, while each type of application protocol in the UW and traces. Web
handheld devices use UDP for only 1.5%. In the face of protocols (HTTP and HTTPS) account for the largest per-
congestion, this difference can impact network perforreanc  centage of traffic for both handheld (97%) and non-handheld
As the number of handheld devices increases, a smaller per{82%) devices. However, web usage is lower for both types
centage of traffic will be UDP and more traffic will be TCP. of devices in the CS network. Email protocols are the sec-
More TCP traffic results in devices using a fairer-share of ond most popular application but account for less than 2%
network bandwidth when there are large numbers of com- of traffic for both device types. (We believe clients actyall
peting flows. However, this increase in TCP flows also in- generate more email traffic than this and attribute the low
creases the amount of flow state that needs to be stored ompercentages of email protocols to the common usage of web
NAT boxes, intrusion detection systems, or other network based email.) These protocol usage observations are eonsis
middleboxes which rely on knowledge of TCP flow state. tent with other network measurement studies [10].




The majority of UDP traffic for non-handheld devices can devices: the median handheld flow size is 50 KB, compared
not be identified by Bro’s dynamic protocol detection. Man- to a median non-handheld flow size of 100 KB. The middle
ual categorization using port numbers and IP addresses re80% of handheld flows range in size from 10 KB to 1 MB,
veals some of the traffic is from VPN, Symantec Systems while the middle 80% of non-handheld flows range in size
Center, DropBox, and Microsoft Simple Service Discovery from 25 KB to 1 MB. At the lower tail, there are fewer small
Protocol. However, more than 90% of the unidentified UDP non-handheld flows than handheld flows. At the upper tall,
traffic is large flows, ranging from 1 MB to 20 MB in size, maximum non-handheld flow size is larger (2 GB) than the
whose application protocol remains unidentifiable. Thagtr ~ maximum handheld flow size (630 MB). The distribution of
fic is likely from streaming media or peer-to-peer file shar- flow sizes for WiFi-only handhelds is identical to the distri
ing, as no traffic of this type is explicitly identified but we bution of flow sizes for all handhelds.
expect should be present.

Handhelds do not exchange any peer-to-peer (P2P) file 1
sharing traffic, and non-handhelds only exchange this traf- 0.9
fic in small amounts (potentially identified as TCP or UDP 0:?
other), if at all. This low volume of P2P traffic differs from L 06
a 2003 study [10] which attributed over 35% of traffic to 3 8-2

3
2
1

P2P applications. Low P2P usage is a good sign for network ¢
0

. : /" /_Handheld -
management and performance, because traffic of this type S iFi Handheld -
has been known to be difficult to control and prevent from 0'0 e Non-handheld ——
overtaking network capacity. Further decreases in P2fictraf 100 1000 10000 100000 1le+06  1le+07
as handhelds become the most prevalent devices, translates Flow size (bytes)
to more bandwidth for streaming media and other bandwidth-
intensive Internet services. Figure 1: CDF of TCP flow size (UW)

Based on the application protocols that are identified, we

observe a larger percentage of non-handheld devices using Handhelds and non-handhelds also differ in their distribu-
internal enterprise services—filesystem, printing, daseb tjon of flow duration. A CDF of flow duration in seconds is
etc. These services represent a small percentage of totakhown in Figure 2. Handhelds have a narrower range of flow
application traffic (about 0.07% in total) but bring to the qgyrations than non-handhelds. The middle 80% of handheld
forefront an important observation: non-handheld usems ca  fgys range in duration from 250 ms to 15 sec, compared to
more about internal services. This observation is reigfdrc 5 range of 100 ms to 75 sec for non-handhelds. The median
by the presence of an internal website brary. wi sc. flow duration is approximately the same for both types of de-
edu) in the top HTTP hosts by request for non-handheld yices. The lack of long flows for handhelds can be attributed

devices (Table 10). From a management perspective, adyg the typically short usage sessions of handhelds reported
ministrators need to balance their focus on maintaining net py Fajaki [7]. Again, the distribution of flow durations is

work services and network performance to satisfy the needsgjmjlar for WiFi-only handhelds and all handhelds.

of non-handheld users. An increase in the number of hand-  The flow durations for a subset of specific applications are
helds requires administrators to place less emphasisem int - shown in Table 6. On average, TCP flows for web traffic are
nal services and more emphasis on increasing network per-ye times shorter for handheld devices than non-handhelds.
formance. Handhelds are served simplified versions of many web pages,

. which we suspect is the cause of generally shorter TCP flows.
5.3 TCP Flow Characteristics p g y

For email traffic, receiving protocols (IMAP, POP) have ghor
As mentioned earlier, TCP traffic accounts for 98% of

handheld traffic. We compare the TCP flow characteris-
tics of handheld and non-handheld traffic to determifne 1 . .

andhowthe network dynamics will change as the network 8:2 [ ]
client base becomes primarily handhelds. We look at the 07t -
flow size, duration, and rate for the downlink half of TCP n 8-2 I ]
connections— data flowing from remote host to the wireless © g7 | j |
client—since the majority of data flows in this direction- In 0.3 | " Handheld - 1
complete flows (flows which do not end withFaN or RE- oar 4 WiFi Handheld - ]
SET) are excluded from the analysis. In all cases, the distri- 0 ., Nonhandheld
butions for the both the UW and CS networks are equivalent; 0.001 001 01 1 10 100 1000
we omit inclusion of the CS distributions for brevity. Flow duration (seconds)

A CDF of flow size in bytes is shown in Figure 1. Hand- _ )
held devices tend to have smaller flows than non-handheld Figure 2: CDF of TCP flow duration (UW)



Categor Transport |Application Handheld Non-handheld
99" Iprotocol | Protocol Avg StdDev|] Avg StdDev| L[ v 3 —— T
Web TCP HTTP 493 15.09 24.06 48.5 B 1
TCP HTTPS 242 1462 1160 38.14 - 1
TCP IMAP4 59.33 67.8 0.69 1.91 r 1
TCP SIMAP 36.30 6423 564 24.0 n - 1
Email TCP POP3 33.06 624] 146  7.69 a L .
TCP SPOP 36.50 51.9 1.95 4.87 © o E
TCP SMTP 3.63 11.4% 26.56 40.6 - 4
TCP Other 16.95 50.6 3.10 18.1§ - 4
Other L Handheld ---------
UDP Other 13.87 201.9¢ 21.72 2106.98 , Non-hangheld , 4
0 32768 65536 98304 131072
Table 6: Application Connection Duration (UW) Average receive window size (bytes)
Figure 4: Average receive window (UW)
1 .
09 1
8§ i 1 5.4 Management Implications
n 06 1 Based on our analysis of the protocols and services used
O 8'2 i | by handheld devices, we make the following management
03} Handheld . recommendations for networks with primarily handheldruiée
02r iFi Handheld I _ . .
O-é [ ..~ Non-handheld —— 1 e Focus less on internal serviceslandheld clients do
100 1000 10000 100000 1e+06  1e+07 not use most internal services like network file sys-
Flow rate (bytes/second) tems, printers, and authentication services. Most traffic
is external HTTP traffic, so clients care more about net-
Figure 3: CDF of TCP flow rate (UW) work performance and the quality of Internet access.

e No concerns with peer-to-peer trafficThe bane of
many network administrators, peer-to-peer traffic is not
present in handheld communications (and has also be-
come only a small fraction of non-handheld traffic).
Instead of shaping peer-to-peer traffic, administrators
should focus on providing strong performance for the
new source of high traffic volumes: streaming media.

average TCP flows on non-handhelds, while the sending pro-
tocol (SMTP) has shorter flows on handhelds. We hypoth-
esize the discrepancy in SMTP is caused by a higher likeli-
hood of non-handheld users including attachments in emails
thus increasing the about of data that must be transferred.
The distribution of flow rate is similar for both types of
devices. Figure 3 shows a CDF of flow rate in bytes/second.
The middle 80% of flows have a rate ranging from 10 KBps WEB TRAFFIC
to 500 KBps, with a median rate of 100 KBps. WiFi-only Web traffic accounts for almost all handheld data (97%)
handhelds have slightly faster flow rates than all handheldsand a large fraction of non-handheld data (82%). HTTP is
for the lower 60% of flows. The factors associated with flow used so commonly because of its wide interoperability and
rate are also consistent across handheld and non-handheldbility to distribute all types of content. Web usage difer
devices: The average round trip time for 90% of TCP flows between handheld and non-handheld devices because of dif-
is less than 100 ms. Only 4% of flows have one or more ferences in the way individuals use these devices. We see
retransmissions due to retransmission time out, and 1% ofdifferences in the range and type of hosts being accessed
flows have one or more retransmissions due to fast retrans-and variability in the type and length of content. We also
mit. Figure 4 shows a CDF of the average receive window. observe that 82% of handheld HTTP traffic is consumed by
Handheld devices have a more linear distribution of window non-browser applications, while only 10% of non-handheld
sizes than non-handheld devices, but the distributionlds re  traffic is destined for other applications. Most notably, we
tively similar. The similarity between the handheld andnon see a higher usage of HTTP-based streaming media services
handheld flow rates implies both types of devices have sim- on handhelds, where video accounts for 42% of handheld
ilar TCP stacks. HTTP content, compared to only 23% for non-handhelds.
Our analysis shows that the aggregate TCP flow charac- Extracting information from HTTP traffic requires re-asdximg
teristics of network traffic will remain relatively unchaed packet payloads into streams. We built a custom tool us-
as the handheld client population increases. Handhelds hav ing the PCAP and NIDS libraries to read traces, reassemble
smaller flows and a narrower range of flow durations, but streams, and extract the necessary fields from HTTP head-
throughput will remain consistent. From a management per-ers. Libnids is part of Network Intrusion Detection Sys-
spective, no major network configuration changes are re-tem [1]; we take advantage of its TCP stream reassembly
quired to maintain similar performance. capabilities to reconstruct HTTP headers and payloads from



% of Bytes|Host Top Content Types % Bytes|Host Top Content Types
35.48% googlevideo.com |video/mp4 11.45% c.youtube.com videofflv, video/mp4
18.12% pandora.com application/octet-streaming, image/jpeg 7.00% pandora.com application/octet-stream, image/jpeg, audio/mpeg
10.57% phobos.apple.conptext/plain, image/jpeg, video/m4v, audio/mp4 6.63% fbcdn.net image/jpeg, image/png, text/javascript
2.45% fbcdn.net image/jpeg, text/javascript, image/png 4.63% dlservice.microsoft.coapplication/octet-stream
2.43% vo.linwd.net video/m4yv, video/mp4, audo/mpeg 2.89% vo.linwd.net video/wmy, audio/mp4
1.23%m.nbc.com video/mp4, image/jpeg, text/javascript 2.8094 stileproject.com application/octet-stream, image/jpeg, video/mjp4
1.17%4espn.go.com text/plain, text/html, image/jpeg 2.53% com.edgesuite.net  |video/wmv, audio/wma, application/octet-stream
1.169%qvideo.ted.com  |video/mp4 1.69% phobos.apple.com  [text/plain, audio/mp4, image/png
0.8294 gdata.youtube.corrapplication/atom-+xml 1.5194 www.facebook.com  |text/html, text/javascript
0.64% s3.amazonaws.cqaudio/3gpp, image/jpeg, image/png 0.94% cdn.turner.com text/javascript, image/jpeg, video/flv

Table 7: Top handheld HTTP hosts by response size

Table 8: Top non-handheld HTTP hosts by response size

% of Requestd Host Top Content Types

sets of TCP packets. Incomplete streams are not reassem
bled by NIDS so we miss the data from some HTTP streams,
but this proportion is small. As a stream is reassembled,
we extract the values of relevant HTTP fields (method, URI,
host, content-type, content-length, etc.) and keep byte an
packet statistics. Due to anonymity concerns, we only look

10.58%
4.26%
3.10%
2.75%

fbcdn.net image/jpeg, text.javascript, image/png
phobos.apple.conmage/png, image/jpeg, text/plain
espn.go.com text/html, image/gif, image/jpeg, image/png
facebook.com  |text/plain, text/html

2.74%
2.56%
1.30%
1.26%
1.23%
1.18%

googlevideo.com
www.apple.com
ad.doubleclick.ne
i.ytimg.com
www.google.com|
itunes.apple.com

video/mp4

text/html

text/javascript, text/html, video/ms-asf, image
image/jpeg

text/html, text/javascript

text/xml

oi

i

at HTTP traffic from the UW traces.

6.1 Hosts
HTTP hosts provide a rough understanding of the types of

Table 9: Top handheld HTTP hosts by request volume

services accessed by clients. We group hosts by subdomain

to cope with websites which load-balance amongst multiple
servers—i.e. we consider traffic f6600. mai | . yahoo.
comandf 504. nai | . yahoo. comto all be associated
with the same hostrai | . yahoo. com However, using
subdomains still keeps key service information intact—i.e
we can differentiate betwegrahoo. comandnmi | . yahoo.
com Also, some web services provide special mobile ver-
sions of content to handheld devices, typically identifigd b
amor nobi | e subdomain. (In some cases we group by do-
main instead of submdomain—for examplecdn. net —

handheld hosts withpplication/octet-strearas the primary
content type.

We also look at the top hosts based on number of HTTP
requests. Table 9 lists the top hosts for handheld devices
and Table 10 for non-handheld devices. The top 10 hand-
held hosts account for 30% of handheld HTTP requests and
non-handheld hosts account for 32% of non-handheld re-
quests. There is a greater diversity of content in the top
hosts by number of requests: social networking, streaming
media, advertising, search, and news. Only one stream-

because load-balancing across lots of servers occurs at théng media host is in the top hosts for handheld devices and

domain level.)
Table 7 lists the top HTTP hosts for handheld devices

none are in the top hosts for non-handheld devices. Also,
the non-handheld top hosts includes an internal UW web-

based on the size (content-length) of the data served to thesite,l i brary. wi sc. edu, re-enforcing our earlier obser-

devices. Over 35% of handheld HTTP content originates
from googl evi deo. com followed by 18% originating
from pandor a. com For each host, we also list the most
frequent content type (based on on the total content-length
for each type). Multimedia content is the most frequent for
eight of the top ten hosts.

The top hosts for non-handheld devices, based on con-
tent size, are listed in Table 8. The most popular host,
yout ube. com accounts for 11% of the data, followed
by pandor a. comwhich accounts for 7% of the data. In
total, the top 10 non-handheld hosts account for 42% of
non-handheld data, while the top 10 handheld hosts accoun
for 74% of handheld data. These percentages indicate 4
much greater diversity in hosts for non-handheld deviaes. |
addition, non-handheld devices are more likely to receive
content from hosts providing more than text or multimedia
content. A Microsoft site hosting application downloads,
dl service. nm crosoft.com appears in the top non-

vation (Section 5.2) that non-handhelds use internal sesvi
more than handhelds.
6.2 Content Type and Length

The type of HTTP content access by devices further char-
acterizes the services used. Table 11 lists the top HTTP con-

% of Requestd Host Top Content Types
15.36% fbcdn.net image/jpeg, image/png, text/javascript
5.70% www.facebook.com text/plain, text/javascript, text/html
2.92% www.google.com text/html, text/javascript, application/jspn
1.849%q ad.doubleclick.net text/javascript, text/html, image/gif

1.24%
1.22%
1.11%
1.08%
1.05%
0.90%

cdn.turner.com
library.wisc.edu
g.doubleclick.net
graphics8.nytimes.com
www.google-analytics.co
espn.go.com

image/jpeg, image/gif, text/javascript
text/html, image/gif, text/javascript
text/html, text/javascript, image/gif
image/jpeg, image/qgif, text/javascript
age/gif, text/javscript

mage/gif, text/html, image/jpeg

Table 10: Top non-handheld HTTP hosts by request volume



protocol Handheld) Non-handheld formance cost of running a malware scanner on a handheld
Application 19.73%] 22.1% . . i
atom+xml, 1ss 0.97% 0.26% is prohibitive. In contrast, a middlebox could scan a large
binary 0.35% 0.02% iori 1 i P
compress, azip. tar. 2p  0.64% 07494 majority of hand_held traffic for malware with relatively few
json 0.23% 0.18% HTTP content signatures.
gg‘fet's"eam 13-51932//; 13-;‘22//; The content for regular web browsing falls mostly into the
shockwave-flash 0% 6.71%) image and text content types. Three image types—qgif, jpeg,
’;Ud'o g-;‘izf 5-53;/0 and png—make up the majority of image content. JPEG im-
. o 0 .

mgpﬂp 0.23% 0.80% ages are the largest with an average length of 13 KB on hand-
mpeg Sgng g-‘z‘ng helds and 11 KB on non-handhelds. HTML, CSS, JavaScript
wma . o . o .
Image 7 2104 59 399 and XML are used for the web page itself. _For both types
gif lé-gi‘;//o 2257522//0 of devices these text types average 3-7 KB in length. Over
P 5 9500 = 6900 two-thirds of the text content received by handheld devices
Text 16.85% 18.92% is identified asplain text. This content is access by non-
css 0.65% 1.36% ot i
oo 23904 73804 b_rowser-based applications retrieving (_jatg from a web ser-
javascript 2.819 6.47% vice, for example a news or sports application.

i 0, 0, « _w .
)’flﬁ:” 18:;%0//0 Sggoﬁ . Thg remaining two top-lev_el categqnes of cont_ent are mul-
Video 47.55% 23.35% timedia traffic, namely audio and video. Multimedia ac-
2app o 1860 counts for 46% of handheld content and 29% of non-handheld
mp4 41.40% 2.30% content. In particular, video accounts for 93% of multime-
Quickiime 028 oSt dia traffic in the handheld case and 80% in the non-handheld

case. We examine video traffic in greater detail next.

Table 11: HTTP content-types by content-length (UW) 6.3 Streaming Video

Streaming video is a major source of traffic for handheld
devices. Video content accounts for 40% of all handheld
tent types, based on content length, for the UW traces. Wetraffic, compared to only 17% of all non-handheld traffic.
group the types based on the top-level category—applitatio Large volumes of multimedia streams bring forth interegstin
audio, image, text, and video—and list the top types for issues because of their size and sensitivity to delay.
each category. The largest volume of handheld content is
video (42%), while images are the top content type for non- 6.3.1 Video Flows
handheld devices (29%). We compare the flow characteristics of handheld stream-
Application HTTP content is data associated with specific ing video flows to all handheld flows to better understand
applications, for example documents, compressed files, orstreaming media’s impact on the network. Figure 5 shows
streaming media control information. For both types of de- the flow size in bytes for handheld TCP flows (excluding
vices, octet-stream-a generic binary stream of data which incomplete flows). As expected, handheld video flows are
an application can interpret as desired—is the most common,large compared to overall handheld traffic: Eighty percent
accounting for 86% of handheld and 51% of non-handheld of video flows are greater than 50 KB in size, whereas 50KB
application type data. Some streaming media sites, for ex-is the median flow size among all handheld flows. Nearly
ample Pandora, use tloetet-streantontent type. The aver-  20% of video flows are larger than 1 MB in size. The me-
ageoctet-streams 713 KB for handhelds (std dev 882 KB) dian flow size is 400KB and the average flow size is 305 KB
and 189 KB for non-handhelds (std dev 658 KB) The second for handheld devices. Also, we note that video flows in non-
most common for handhelds is RSS feeds (average length othandhelds are even larger: The median flow size is nearly an
29 KB), while Shockwave Flash is the second most common order or magnitude higher (3MB).
for non-handhelds (average length of 38 KB). No handhelds The flow duration for handheld TCP flows is shown in
access Shockwave Flash content because there was no Fladkigure 6. Video flows for handhelds appear to be of a short
support on these devices until very recently. duration. Eighty percent of video flows are less than 1 sec-
The diversity of application content types is greater on ond in duration, with a median video flow duration of 0.5
non-handheld devices than handhelds. Over 185 differentseconds. The median durations for all handheld flows and
types of application content are accessed by non-handheld$or non-handheld video flows are significantly higher, at 5
compared to only 58 different types for handhelds. Thisvari and 50s, respectively. We expect the short flow durations re-
ety in types results from the greater diversity of applimasi sult from handhelds’ goal of conserving energy by receiving
running on non-handheld devices. data over wireless in short periods of time.
Stemming from this observation, we envision in-network  Based on the short duration of video flows, we expect high
security scanners as a viable service to deploy in networksthroughput rates for handheld video flows. Figure 7 shows
with large proportions of handhelds. The energy and per- the rate of handheld TCP flows. Eighty percent of video
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Figure 6: Flow duration in seconds

flows have a rate faster than 100KBps (0.8 Mbps), with a
median flow rate of 250 KBps (2 Mbps). In contrast, the
media flow rate for all handheld flows and for non-handheld
video flows is roughly 75 KBps (0.6Mbps).

On the whole, handheld video flows are long in size (al-
though not as long as non-handheld video flows), signifi-
cantly shortin duration, and achieve high end-to-end thheu
puts which are comparable, if not slightly higher than non-
handheld video flows.

6.3.2 Video Format
Video content streamed to handheld devices differs from

video streamed to non-handheld devices because of differ-

ences in decoding capabilities. Most streaming video ser-
vices use Adobe Flash, but Flash support did not exist on

Handheld Al - ' /
Handheld Video g
Non-handheld Video

CDF

10 100
Flow rate (bytes/second)

Figure 7: Flow rate in bytes/second

handheld devices until very recently [3]. Instead, handhel
devices receive video content that is encoded using MPEG
4. Table 11 shows thatp4(MPEG 4) is the top video type

for handhelds andlv (Flash video) is the most common for
non-handhelds. Video streaming sites like YouTube serve
two versions of videos: one encoded as mp4 and the other
encoded as flv.

To better understand the differences in the video content
served to the two different types of devices, we watch the
same 3 minute video [2] from YouTube on both a Google
Android HTC Dream smartphone and a Lenovo X201 lap-
top. On the phone, we use the standalone YouTube applica-
tion and on the laptop we use Mozilla Firefox. The handheld
device receives 7362 KBi deo/ np4; the non-handheld
device receives 11792 KBi deo/ f | v. Both videos have
the same resolution of 320 x 240, but the mp4 version is en-
coded at 30 fps (frames per second) and 200 kbps, while the
flash version is encoded at 25 fps and 231 kbps. The flash
video is of slightly higher quality, with more bits per sedon
but both versions are comparable. The audio is encoded in
stereo at 44100 Hz and 128 kbps for the mp4 version and
mono at 22050 Hz and 64 kbps for the flv version. The mp4
audio is higher quality than the Flash audio, but both ver-
sions are closely comparable. We conclude the video served
to handheld devices is of approximately equal quality, but
the content is smaller in size—the handheld version is about
62% of the size of the non-handheld version.

The size of both handheld and non-handheld video flows
are relatively small compared to the size of the sample YbeTu
video. The average handheld video flow size is 305 KB,
much less than the 7.4 MB size of the 3 minute video. This
size gap implies individuals watch only a small fractiomy(e.
the initial few seconds) of most videos on their handhelds.

6.4 Management Implications

Our analysis of HTTP traffic yields the following man-
agement implications for wireless networks with a primaril
handheld client base:

e Deploy in-network malware scannersThe majority

of handheld traffic (93%) is HTTP and consists of less
than 100 different content types. Deploying a mal-
ware scanner as a middlebox requires knowledge of a
limited number of content types, yet can provide rela-
tively high coverage of handheld data. It also avoids
the energy and performance penalties of running an
anti-malware application directly on handhelds.

Use traffic shaping for suitable streaming video per-
formance Almost half of all handheld traffic is stream-
ing video. This content is sensitive to delay and re-
quires sufficient bandwidth to transfer data in a rea-
sonable period of time. Quality of service and other
forms of resource reservation are not scalable in net-
works where a large percentage of traffic is from mul-
timedia streams. Instead, administrators need to use



traffic shaping or admission control to ensure sufficient 1
resources are available to meet the streaming media 0.9
demands of handheld devices. However, designing ap- 8:3
6
5

propriate traffic shapers and admission controllersmay |, o.
not be easy because of the ephemeral nature (i.e., short§ 8-
duration) of the video flows. 0.3

Intra-user:handheld ——
Inter-user:handheld

0.2 Intra-user:non-handheld ---------
7. CONTENT SIMILARITY 0-<1) [ £ . Iqter-ustler:non-lhandhgld B
In this section, we examine the similarity in the content 0 005 01 015 02 025 03 035 0.4
perused by mobile smartphone users and compare it against Content similarity

non-handheld users. We evaluate a “chunk-based” content ) )
similarity system, akin to DOT [20], SET [17], EndRE [5] Figure 8: Average intrauser and interuser redundancy acros
and LBFS [15]: we first divide the payloads of packets ex- Multiple traces corresponding to handheld devices
changed by users into chunks using value sampling [20]; the

sizes of the chunks range between 32B and 64B. We then 1

identify if the chunks have appeared in an earlier accesses. 09 | ' e 1
Unless otherwise specified, we assume that a total of 2GB 8-? i 2 |
worth of chunks are stored across all users, as done in prior | o6 | i
systems [5]. g8 05F IMB — ]
. . . . . 04 | J
This analysis helps us estimate the benefit of employing 03k 20MB —— ]
content similarity suppression schemes which eliminate du 0.2 oo MB
plicate chunks from network transfers by serving them from O-é . . . . . 2GB e ]
a local cache [8, 5, 20, 17]. Such schemes help improve 0O 01 02 03 04 05 06 07 08
both the end-to-end latency as well as transfer throughput Content similarity

experienced by users, and they can also help save mobile
battery life by conserving network transmissions. Chunk- Figure 9: CDF of intrauser redundancy across top 100 (by
based schemes in particular are more effective than objectvolume) handheld device traces for different dictionazgsi
caching schemes such as Web caches as they are known
to identify more duplicates, e.g., sub-object duplicates,
cacheable content etc. Thus, our analysis places an uppeheld traces than in non-handheld traces. Second, similar-
bound on the effectiveness of using caching and similarity ity due to inter-user matches is quite small: less than 2%
suppression. for more than 95% of both handheld and non-handheld trace
In performing this study, we identify two types of similar- subsets. Third, we observe that in more than 40% of the
ity: that found in content accessed by the same user, whichnon-handheld trace subsets, and more than 70% of the hand-
we refer to as “intra-user” similarity, and that found in eon held device trace subsets,8% of the similar bytes are due
tent accessed by a different user in the network, which we to intra-user matches. In some cases, we observed upto 20-
refer to as “inter-user” similarity. The former can be ex- 25% intra-user similarity for both kind of traces. Finatlye
ploited much more easily, by deploying caches close to the extent of intra-user similarity is greater in the case ofdvan
users, such as per-user or per-AP caches. In order to exploitelds than in the case of hon-handhelds.
the latter, the network admin may have to employ schemes Given that the dominant fraction of similar bytes belonged
for issuing cross-cache queries across per-user or per-ARo intra-user traffic, we further delve intro intra-user sim
caches, or maintaining a single larger cache that aggregatelarity. In particular, we explore the efficacy of deploying
content accessed by all users. Furthermore, if intra-&ser r per device caches and the cache size configuration issues
dundancy dominates then partial deployment of per-user ortherein. We split the handheld traffic on a per device basis

per-AP caches will result in partial benefits. and study the effect of different dictionary sizes on amount
In Figure 8, we show the extent of intra- and inter-user of similarity identified per device.
content similarity observed over every 1 million packetstvo Figure 9 shows the CDF of similarity across top 100 de-

of handheld and non-handheld traffic. The traces are 0.8-vices by traffic volume for different dictionary sizes. Ejrs
2GB in size. We measure content similarity as the ratio of we observe that almost 80% of users have less than 20%
similar bytes to all bytes in the 1 million-packet trace sub- similarity with their own traffic. However, for certain user
set. The graph plots a CDF of average redundancy of differ- the similarity proportion was much higher (more than 50%).
ent types observed per trace. Second, we observe that most of the similarities can be iden-
The graph shows that content similarity varies across dif- tified by using only 50 MB cache; Larger cache sizes ex-
ferenttraces (and, thus, over time) and across similaitgs. hibit diminishing returns in the amount of similarity they
First, we observe a greater amount of similarity in hand- can identify. These two observations imply that partial de-
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ployment of small per-device caches can result in significan ~ Handheld devices have become a significant fraction of
benefits. the client base in campus wireless networks, and their usage
Since our chunk-based analysis upper bounds the similar-is expected to continuing growing. Using traces from two
ity that can be identified by object caching approaches, it is wireless networks at the University of Wisconsin-Madison,
safe to conclude from our analysis that even if object level we identify differences in the traffic characteristics ohtla
caches were employed: held and non-handheld devices which have implications for
network management. We observe that handheld devices
e It is better to employ per device, or per-AP, caches mgake less use of internal services and are more concerned
as most matches are intra-user, and per-device cachegyith the performance and quality of Internet access. Over
care simpler and can help provide partial deployment 9g, of handheld traffic is web traffic, and handheld devices
benefits. do not send any peer-to-peer traffic, avoiding the bane of
many network administrators. The HTTP communications
of handhelds are spread across a smaller number of hosts and
content types than non-handhelds, paving the way for easy
implementation of in-network security scanners. Forty per
8. RELATED WORK cent of all handheld traffic is HTTP-based streaming media,
Our work complements and extends prior studies of cam- prompting administrators to ensure adequate bandwidth is
pus wireless networks. Some of these focussed on PDA andqyajlable by shaping other network traffic. Lastly, adminis
smartphone usage. We discuss these studies next. trators may consider employing "chunk-based” content dis-
Multiple measurement studies have analyzed traffic pat- tripution systems to improve caching and decrease handheld
terns in campus wireless network. Hederson et. al identify network transmissions. As handheld usage continues to in-
session and application trends at Dartmouth College and ob-crease, administrators will need to change the way they man-

serve how usage evolved four years after the network’s ini- age wireless networks and deploy new services to meet the
tial deployment [10]. Wireless AP workloads at Darthmouth ynique demands of these devices.

are compared to the University of North Carolina at Chapel
Hill by Hernandez-Campos and Papadopouli [11]. Lastly, 10. REFERENCES
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