Latency in Software Defined Networks:
Measurements and Mitigation Techniques

Kegiang Hef, Junaid Khalid, Sourav Dasf, Aaron Gember-Jacobson’, Chaithan Prakasht,
Aditya Akella®, Li Erran Li*, Marina Thottan*
fUniversity of Wisconsin-Madison, *Bell Labs

ABSTRACT

We conduct a comprehensive measurement study of switch con-
trol plane latencies using four types of production SDN switches.
Our measurements show that control actions, such as rule instal-
lation, have surprisingly high latency, due to both software im-
plementation inefficiencies and fundamental traits of switch hard-
ware. We also propose three measurement-driven latency mitiga-
tion techniques—optimizing route selection, spreading rules across
switches, and reordering rule installations—to effectively tame the
flow setup latencies in SDN.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Network]: General

Keywords

Software-defined Networks; Latency; Measurement; Mitigation

1. INTRODUCTION

Software defined networking (SDN) advocates for the separation
of control and data planes in network devices, and provides a log-
ically centralized platform to program data plane state [5]. This
has opened the door to rich network control applications that can
adapt to changes in network topology or traffic patterns more flex-
ibly and more quickly than legacy control planes [1,2]. For such
applications, timely interaction between the logically central SDN
control plane and network switches is crucial. However, it is un-
known whether SDN can provide sufficiently responsive control to
support the aforementioned applications.

To this end, we present a thorough systematic exploration of la-
tencies in four types of production SDN switches from three differ-
ent vendors—Broadcom, Intel, and IBM—using a variety of work-
loads. Key highlights from our measurements are as follows: (1)
We find that inbound latency, i.e., the latency involved in the switch
generating packet events to the controller can be high (8 ms per
packet on average on Intel). We find the delay is particularly high
whenever the switch is simultaneously processing forwarding rules
received from the controller. (2) We find that outbound latency, i.e.,

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s). Copyright is held by the author/owner(s).
SIGMETRICS’15, June 15-19, 2015, Portland, OR, USA.

ACM 978-1-4503-3486-0/15/06.
http://dx.doi.org/10.1145/2745844.2745880.

100

2 2

E E 8

= z

I) 60 ¥ + :

o o . o, LA
= = S

2 R e AT
2 2 i1 EE
=] £ 20 + ¥
g g

ot

0 0200 400 600 800 1000 00 200 400 600 800 1000
flow # flow #
(a) with flow_mod/pkt_out (b) w/o flow_mod/pkt_out
Figure 1: Inbound delay on Intel switch, flow arrival rate = 200/s

the latency involved in the switch installing/modifying/deleting for-
warding rules, is high as well (3ms and 30ms per rule for insertion
and modification, respectively, in Broadcom).

Some of our findings show that poor switch software design con-
tributes significantly to observed latencies (affirming [4, 6]). We
believe that near term work will address these issues; our measure-
ments with an early release of Broadcom’s OpenFlow 1.3 software
exemplify this. More crucially, our measurements also reveal la-
tencies that appear to be fundamentally rooted in hardware design:
e.g., rules must be organized in switch hardware tables in prior-
ity order, and simultaneous switch control actions must contend
for limited bus bandwidth between a switch’s CPU and ASIC. Un-
less the hardware significantly changes—and our first-of-a-kind in-
depth measurement study may engender such changes—we believe
these latencies will manifest even in next generation switches.

To mitigate the impact of outbound latency, and support the needs
of SDN apps, we propose three immediately deployable techniques:
flow engineering (FE), rule offload (RO), and rule reordering (RR).
Simulation for fast fail-over and responsive traffic engineering ap-
plications shows our techniques can improve the time taken to up-
date network state in these scenarios by factors of 1.6-5X. Detailed
results can be found in [3].

2. LATENCY MEASUREMENTS

We conduct measurements on four types of switches from three
vendors—Broadcom 956846K with OpenFlow 1.0 firmware (BCM-
1.0) and OpenFlow 1.3 firmware (BCM-1.3), Intel FM6000 (Intel)
and IBM G8264 (IBM). We craft our experiments to ensure the la-
tency impact of various factors can be measured directly from the
data plane with the exception of packet_in generation latency.

2.1 Inbound Latency

Representative results for inbound latency are shown in Figure 1a
and 1b, respectively, for the Intel FM6000 switch. For the first ex-
periment, we see that the inbound latency is quite variable with a
mean of 8.33ms, a median of 0.73ms, and a standard deviation of

30

))
E 2 g
&2 20 B
Q L
o 15 b °
g By g
g 10 , £
=1 + 4 =1
S5 e] g
-
g e e £

0 20 40 60 80 100
rule #

(a) burst size 100, same priority (b) burst size 200, same priority

insertion delay(ms)

(c) burst size 100, incr. priority

50 50 =
40 E 4 R
= N
30 L 5 30 N R
20 g £ 20 gt
NS T - ST

10 b 4k i g 10 £

b i g
0 = 0

0 20 40 60 80 100 0 50 100 150 200

rule # rule #

(d) burst size 200, incr. priority

Figure 2: BCM-1.0 per-rule insertion latency

31.34ms. For the second experiment, the inbound delay is lower
(mean of 1.72ms, median of 0.67ms) and less variable (standard
deviation of 6.09ms). We also observe that inbound latency de-
pends on the packet_in rate: e.g., in first experiment the mean is
3.32 ms for 100 flows/s (not shown) vs. 8.33ms for 200 flows/s
(Figure 1a). Our conversations with the switch vendor suggest that
the limited bus bandwidth between the ASIC and switch CPU is the
primary factor contributing to inbound latency.

2.2 QOutbound Latency

We study the outbound latencies for three different flow_mod op-
erations: insertion, modification, and deletion. For each operation,
we examine the latency impact of key factors, including flow table
occupancy and rule priority.

2.2.1 Insertion Latency

Figure 2 shows representative results on BCM-1.0 switch. We
observe that: (1) rule complexity does not affect insertion delay;
(2) same priority insertions in BCM-1.0, BCM-1.3, Intel and IBM
are fast and not affected by flow table occupancy; and (3) priority
insertion patterns can affect insertion delay very differently. For
Intel, increasing priority insertion is similar to same priority inser-
tion, but decreasing priority incurs much higher delay. For BCM-
1.3 and IBM the behavior is inverted: decreasing priority insertion
is similar to same priority insertion and increasing priority insertion
incurs higher delay. For BCM-1.0, insertions with different priority
patterns are all much higher than insertions with same priority. Key
root causes for observed latencies are: (1) how rules are organized
in the TCAM, and (2) the number of TCAM slices. Both of these
are intrinsically tied to switch hardware. Even in the best case (In-
tel), per-rule insertion latency of 1ms is higher than what native
TCAM hardware can support. Thus, in addition to the above two
causes, there appears to be an intrinsic switch software overhead
contributing to all latencies.

2.2.2 Modification Latency

We observe that the per-rule modification latency on BCM-1.0
and IBM is impacted purely by table occupancy, not by rule prior-
ity structure. Conversations with Broadcom indicated that TCAM
modification should ideally be fast and independent of table size, so
the underlying cause appears to be less optimized switch software
in BCM-1.0. For BCM-1.3 and Intel, the per-rule modification de-
lay is independent of rule priority, table occupancy, and burst size;
BCM-1.3’s per-rule modification delay is 2X higher than insertion.

2.2.3 Deletion Latency

For BCM-1.0, BCM-1.3, Intel and IBM, deletion latency is not
affected by the priorities of rules in the table or the order of dele-
tion. However, deletion delay is affected by table occupancy—it
decreases with rule number in all the switches we measured. Thus
we infer that deletion is incurring TCAM reordering.

3. MITIGATION TECHNIQUES

We propose three techniques to mitigate the outbound latencies
imposed by current switches: Flow engineering (FE) leverages our
empirical latency models to compute paths such that the latency
of installing forwarding state at any switch is minimized. Rule of-
floading (RO) computes strategies for opportunistically offloading
installation of some forwarding state to downstream switches. Fi-
nally, rule reordering (RR) sends rule installation requests in an
order that is optimal for the switch in question. By reducing in-
stallation latency per switch (FE + RR) and enabling network-wide
parallel updates (RO), rule updates can finish much faster. We eval-
uated our mitigation techniques for three applications: failover in
a tunneled WAN, two-level responsive traffic engineering, and Mi-
croTE [2]. Our simulations show we can improve the time taken to
update network state in these scenarios by factors of 1.6-5X.

4. CONCLUSION

Our measurements across four OpenFlow-based switches show
that the latencies underlying the generation of control messages
(pkt_in’s) and execution of control operations (flow_mod’s) can
be quite high, and variable. We find that the underlying causes
are linked both to software inefficiencies, as well as pathological
interactions between switch hardware properties (shared resources
and how forwarding rules are organized) and the control operation
workload (the order of operations issues, and concurrent switch
activities). Finally, to mitigate the challenges these latencies cre-
ate for SDN in supporting critical management applications, we
present three measurement-driven techniques. Our evaluation shows
that these mechanisms can tame flow setup latencies effectively.

Acknowledgement

This work is supported in part by NSF grants CNS-1302041, CNS-
1314363 and CNS-1040757.

S. REFERENCES

[1] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat. Hedera: Dynamic flow scheduling for data center
networks. In NSDI, 2010.

[2] T.Benson, A. Anand, A. Akella, and M. Zhang. Microte: Fine grained
traffic engineering for data centers. In CoNEXT, 2011.

[3] K. He, J. Khalid, S. Das, A. Akella, E. L. Li, and M. Thottan. Mazu:
Taming latency in software defined networks. University of
Wisconsin-Madison Technical Report, 2014.

[4] D.Y. Huang, K. Yocum, and A. C. Snoeren. High-fidelity switch
models for software-defined network emulation. In HotSDN, 2013.

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: enabling innovation
in campus networks. SIGCOMM CCR, 2008.

[6] C.Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore. Oflops:
An open framework for openflow switch evaluation. In PAM, 2012.

