
StateAlyzr: Deep Diving into Middlebox
State to Enable Distributed Processing

Junaid Khalid, Aaron Gember-Jacobson, Roney Michael,
Anubhavnidhi Abhashkumar, Aditya Akella

University of Wisconsin-Madison

Abstract
We consider the problem of modifying network middleboxes
to enable live state redistribution. The need for this arises
when an input workload is redistributed across middlebox
instances in important scenarios such as elastic scale in/out,
high availability, and load balancing. While techniques ex-
ist today for safe migration/cloning of live state, the task
of modifying middlebox code to identify needed state is
manual, and hence extremely complex and error prone. We
present a system, StateAlyzr, that embodies a novel set of al-
gorithms adapted from program analysis techniques to prov-
ably and automatically identify all state that must be migrat-
ed/cloned to ensure consistent middlebox output in the face
of dynamic redistribution. StateAlyzr leverages middlebox
code structure and common design patterns to simplify anal-
ysis and to minimize migrating/cloning unneeded state. We
apply StateAlyzr to four open source middleboxes. We find
that a large amount of live state matters toward packet pro-
cessing in these middleboxes. We build upon the output of
StateAlyzr to develop a highly-available version of one of
the middleboxes. We find that StateAlyzr’s algorithms can
reduce the amount of state that needs to be transferred across
live and hot standby instances by up to 600×.

1. Introduction
Recent advances in virtualization and software-defined sys-
tems have made it markedly easier to operate dynami-
cally scalable and highly available applications. Virtual
machines (VMs) and containers can both be easily repli-
cated [4, 12, 14] for scale out or high availability, and appli-
cation traffic can be easily rerouted using consistent hash-
ing or software-defined networking (SDN). However, the
ability to redistribute application tasks at a fine granularity
among instances (e.g., reallocating the handling of a client
request)—to achieve better performance, lower operating
costs, or higher availability—is severely limited today.

Such redistribution is complicated by the presence of live
application state. This state is dynamically updated as the
application processes each request, or even each packet, and
the state’s current value determines the actions the applica-

tion will take on the input workload. Thus, blindly reallocat-
ing tasks without explicitly handling application state can re-
sult in erroneous processing, because the relevant state may
be unavailable at the task’s new location.

To this end, recent proposals have argued for explicit,
fine-grain handling of application state. Escape Capsule [24],
Split/Merge [25], Pico Replication [23], and OpenNF [16]
have provided frameworks for safely and efficiently transfer-
ring application state between instances to ensure up-to-date
state is available when and where it’s needed. This can po-
tentially open the door for cost-effective application scaling,
better control of application performance, faster and more
efficient failover, and other new services [16].

However, application designers are still left with an enor-
mous task: manually modifying their existing software, or
rebuilding from scratch, to provide the necessary support for
external state control and cross-instance coordination. Three
factors make this is a daunting task: (i) application software
may be extremely complex; (ii) there may be tens if not hun-
dreds of object types that correspond to state that needs ex-
plicit handling; and (iii) applications are extremely diverse.
Factors i and ii make it nearly impossible to reason about
the completeness or soundness of modifications made. And,
iii means manual techniques that apply to one application
don’t necessarily extend to another.

The ultimate goal of our work is to make the above
code modification process automatic, systematic, and gen-
eral. The work presented in this paper considers a version of
this problem that is narrow in two respects: First, we focus a
majority of our discussion on middleboxes, a special class of
in-network applications that perform stateful, custom packet
processing. Examples of middleboxes include Web prox-
ies, firewalls, load balancers, WAN accelerators, application
gateways, and intrusion detection systems (IDSs). Second,
instead of focusing on fully automated code modification,
we focus on addressing the basic research challenges in code
analysis that are the precursor to automated modification.

More precisely, we aim to significantly ease the task of
modifying arbitrary middlebox code to ensure state trans-
fer across instances provably maintains the output equiva-

1 2016/1/14

lence property [25], which states that the aggregate output
produced by a collection of instances following redistribu-
tion should be equivalent to the output that would have been
produced had redistribution not occurred. To ensure redistri-
bution offers good performance and incurs low overhead, we
seek the minimal such state needed.

In Section 2, we argue that this entails solving four sub-
problems: (i) identifying critical state objects, (ii) determin-
ing if state is read-only or write-able, (iii) determining how
state impacts output, and (iv) identifying which subset of in-
put workload (i.e., the “flow space”) can cause reads/updates
to some state. While the first matters toward output equiva-
lence, the latter three impact redistribution efficiency.

Unfortunately, middlebox state only exists at runtime. If
we choose to identify critical state and its properties at run-
time, middleboxes may run 13× slower. Therefore, our sys-
tem, StateAlyzr, relies on static program analysis to identify
the possible existence and properties of critical state before it
comes into existence. StateAlyzr’s algorithms are based on a
synthesis of escape analysis [21, 26], pointer analysis [9, 27],
and program slicing [17, 29] techniques, modified to lever-
age typical middlebox code structure and design patterns.
We prove that the algorithms ensure output equivalence, and
show empirically that they are effective in improving state
transfer efficiency.

We run StateAlyzr on four production quality, open
source middleboxes: Passive Real-time Asset Detection
System (PRADS) [6], HAProxy load balancer [3], Snort
IDS [7], and OpenVPN gateway [5]. We find that the amount
of live state that matters toward packet processing can be
large—captured by as many as 29-300 variables across the
four middleboxes. A fraction of these (33-60%) represent
updateable state; of these, a subset (60-88%) impact pack-
et/log output. We also show that StateAlyzr’s output for
PRADS aligns with, and, crucially, improves on, the man-
ual modifications the authors of OpenNF [16] made to this
middlebox. Finally, we build upon the output of StateAlyzr
to transform a stand-alone version of PRADS into a highly
available distributed version. Compared to naively cloning
all updateable state to a hot standby PRADS instance, effi-
cient instrumentation based on StateAlyzr’s output can re-
duce the amount of state transferred by 300× by focusing
on relevant flow-spaces, and by a further 2× by monitoring
the precise state that got updated; furthermore, the run time
overhead of the instrumentation is just 0.14%.

Even though we focus on middleboxes, we believe that
the high-level ideas—leveraging common code structure and
design patterns across applications of a given class—can be
employed toward similar static analysis-driven code modifi-
cation of other generic applications.

2. Background and Motivation
We start by describing the structure of middlebox software
and the nature of middlebox state maintain. We then describe

init() process(packet)

packet = receive()

send(packet) write(log)

packet

receive

loop

main()

Figure 1: Logical parts of middlebox code

StoreEntry

ReplyContext

ReplyContext

RequestContext

ClientSocketContext

ClientSocketContext StoreEntry

MemObject

MemObject

HttpRequest

HttpRequest

RequestContext

Figure 2: Internal state for the Squid caching proxy: each
shaded box is a different piece of state; red (dark) state is
maintained for each client connection; yellow (light) state is
maintained for each cached web object; both are organized
using hash tables.

the notion of output equivalence that is central to any sce-
nario needing dynamic redistribution of processing across
middlebox instances; we describe prior works to ensure out-
put equivalence and the challenges they pose to middlebox
application developers. We conclude with a discussion of re-
quirements for any framework aiming to reduce application
developers’ effort in this regard.

2.1 Middlebox Structure
Irrespective of the specific function of a middlebox, its code
can be logically divided into five basic parts (Figure 1):
initialization, packet receive loop, packet processing, packet
write, and log write. The initialization code runs when the
middlebox starts. It reads and parses configuration input,
loads supplementary modules or files, and opens log files.
All of this can be done in the main() procedure, or in
separate procedures called by main. The packet receive loop
is responsible for reading a packet (or byte stream) from the
kernel (via a socket) and passing it to the packet processing
procedure(s). The latter analyzes, and potentially modifies,
the packet. The procedure(s) reads/writes internal middlebox
state to inform the processing of the current (and future)
packet. Lastly, the packet write and log write functions,
both of which are optional, pass a packet to the kernel for
forwarding and record the middlebox’s observations and
actions in a log file, respectively. These functions are usually
called from within the packet processing procedure(s).

Performing sophisticated packet processing requires mid-
dleboxes to maintain detailed internal state at run time. Fig-
ure 2 shows a subset of the state maintained by a Squid
caching proxy [8]. Each piece of state pertains to a spe-
cific connection1, session, application, host, subnet, URL, or
other network unit, and is organized using hash tables, lists,

1 Defined using the traditional 5-tuple: source IP, destination IP, protocol,
source port, and destination port.

2 2016/1/14

trees, or other data structures that facilitate easy lookups
based on packet fields. A middlebox’s state is highly coupled
with the traffic it receives—every packet may trigger reads
and updates to multiple pieces of state—and a middlebox’s
actions are highly coupled with its current state.

As a result, rerouting traffic between middlebox inst-
ances—e.g., for high availability or load balancing—can
compromise a middlebox’s effectiveness, and potentially
break end-to-end connectivity. For example, if a client’s
traffic is rerouted to a new caching proxy after the client
has already transmitted part of an HTTP request, the new
proxy won’t be able to reconstruct the full request, and the
client’s request will fail.

2.2 Output Equivalence
As the above example shows, maintaining effective middle-
box operation following traffic rerouting requires cloning or
transferring critical middlebox state across instances. How
we define “critical state” depends on the scenario. To avoid a
failed client request in our example above, we must move the
ClientSocketContext, RequestContext, ReplyContext, and
HttpRequest objects associated with the client’s connection
to the new proxy instance. If we are instead in the midst of
sending a reply to the client, and we want to avoid an in-
complete file transfer, we must also copy the StoreEntry and
MemObject associated with the URL the client requested.

More generally, we want to move or copy the middle-
box state required for output equivalence: i.e., the aggregate
output produced by a collection of middlebox instances fol-
lowing traffic rerouting should be equivalent to the aggregate
output that would have been produced had the rerouting not
occurred [25].2

Frameworks. Fortunately, frameworks like Split/Merge [25],
Pico Replication [23], and OpenNF [16] have made great
strides in safely and efficiently copying and moving middle-
box state to achieve output equivalence. These frameworks
enable an external controller to get() and put() the needed
internal state, while relying on mechanisms such as events
or counters (which indicate packet arrivals during get()
or put()) to guarantee that the state transfer/clone satisfies
certain safety and liveness properties (e.g., loss-free, order-
preserving or strongly consistent).
Challenges they pose. These frameworks are based on two
non-trivial assumptions: (i) what state is critical is known
prior to run time, and (ii) the middlebox has been exhaus-
tively instrumented to “leave no critical state behind”. For
these to hold, developers need to have intimate familiarity
with the various types of state a middlebox maintains, and
an understanding of which state affects a middlebox’s out-
put and how. This is not easy: as shown in Table 1, several
popular middleboxes have between 60K and 275K lines of

2 In some cases, we may accept a relaxed notion of output equivalence: e.g.,
the proxy’s interactions with clients must be equivalent, but we are willing
to tolerate more cache misses, and corresponding requests to remote servers.

Middlebox LOC (C/C++) Event based?
Snort IDS [7] 275K No
HAProxy load balancer [3] 63K No
OpenVPN [5] 62K No
PRADS asset detector [6] 10K No
Bro IDS [22] 97K No
Squid caching proxy [8] 166K Yes

Table 1: Code size for popular middleboxes. The ones above
the line are analyzed in greater detail later.

Regular
instance

Backup
Instance

Clone
state

Buffer
packets

Figure 3: Steps to enable fast, transparent failover

code, dozens of different structures and classes, and complex
event-based control flow.
Output equivalence vs. efficiency. We aim to design a
framework that enables a developer to (semi) automatically
instrument middlebox software to transfer/clone the minimal
state needed to ensure output equivalence. Transferring all
state ensures output equivalence, but adds significant over-
head and latency due to the inclusion of unneeded state.

In what follows, we break this down into four require-
ments using the example of middlebox modifications neces-
sary for fast, transparent failover to ensure high availabil-
ity. We stress that the same requirements apply to modifying
middleboxes to support dynamic redistribution in other con-
texts, such as, load balancing and scaling.

2.3 Middlebox Modifications Required
Meeting strict uptime guarantees, such as the five-nines
availability demanded by service providers, requires fast,
transparent failover of middlebox instances. To achieve this,
we must occasionally clone a middlebox’s internal state, ei-
ther to persistent storage or to another middlebox instance
(Figure 3). Packets output by the middlebox cannot be re-
leased into the network until the state has been successfully
cloned [23]. To support such cloning, a developer needs to
know what middlebox state is critical?

A naive failover system could clone all middlebox state
(assuming the cloning process itself satisfied certain safety
guarantees [16, 23]). If we assume failure recovery always
happens at packet boundaries—i.e., we resume processing at
the start of the next packet, not in the middle of processing a
packet—then we can slightly constrain our answer: we only
need to clone middlebox state used during the processing of
more than one packet (R1).

However, simply exporting all state used in the process-
ing of multiple packets causes duplicate and unnecessary

3 2016/1/14

state cloning, impacting speed and efficiency. First, some
middlebox state may only be read, never written, during
packet processing. For example, the Squid caching proxy
parses a configuration file on startup, and it stores the set-
tings in memory for fast access when processing packets.
Similarly, the Snort IDS parses signature files on startup,
and compiles the signatures into regular expressions for fast
pattern matching when processing packets. Such read-only
states only need to be exported and cloned once—more than
once just adds unnecessary overhead (Section 6.3). Thus, an
analysis framework should indicate which state is read but
never updated during packet processing (R2).

Second, operators will likely tolerate some deviation in
certain forms of middlebox output. For example, the packets
produced by a caching proxy following failover should obey
output equivalence, but output equivalence of a proxy’s log
of requests and cache misses is probably not necessary. A
middlebox developer can reduce cloning overhead by choos-
ing to exporting only the state that affects packet output.
Thus, an analysis framework should indicate whether spe-
cific state affects packet output and/or log output (R3).

When an instance fails, we want to avoid overloading
the fallback instance(s), otherwise the network may expe-
rience cascaded failures. We can minimize the likelihood of
overload by spreading traffic from the failed instance among
multiple instances [23]. With such load distribution, every
fallback instance does not need the same set of middlebox
state; each fallback instance only needs the state that may
be used during the processing of the traffic it will receive
following failover. For example, the state the Squid caching
proxy maintains on a per-connection basis (the red/dark state
in Figure 2), only needs to be cloned to the fallback instance
responsible for a particular connection. To facilitate such fil-
tered exporting, an analysis framework should identify which
traffic will cause read/updates to specific state (R4).

3. StateAlyzr Foundations
We present the basic components of our system, StateAlyzr,
that help meet the requirements R1–4 above. StateAlyzr
leverages middlebox code structure and common design pat-
terns to combine and adapt different techniques from static
analysis to provably guarantee soundness in meeting the
above requirements, while also ensuring usable precision.

3.1 Critical Middlebox State
Formally, middlebox state is a collection of scalar and com-
pound values. These values are stored in the stack, heap,
or data segments of a program’s memory space. For ex-
ample, a count of the number of received packets may be
an integer value stored on the stack, while a compound
value (i.e., an object) of type ClientSocketContext class
may be created on the heap for each new TCP connec-
tion a middlebox sees. A value may also be a reference to
(i.e., the memory addresses of) another value: e.g., an ob-

ject of type ClientSocketContext may point to an object
of type RequestContext. A value’s lifetime is the duration
for which its storage location is allocated.

Critical middlebox state is the set of values that (i) have a
lifetime longer than the lifetime of any packet processing
procedure, and (ii) are used within some packet process-
ing procedure. As discussed in Section 2, achieving output
equivalence in the face of dynamic redistribution requires
identifying and transferring/cloning such critical state.

3.1.1 Run Time Analysis
Unfortunately, the precise lifetime of many values is not
known until run time, because middleboxes tend to dynami-
cally allocate values as packets are processed. To determine
the precise lifetime of these values, we must track all mem-
ory allocations and deallocations at run time. Furthermore,
to determine if a value is reachable from within a packet
processing procedure, we must track the creation (and de-
struction) of references to the value. Alternatively, we can
track all memory accesses and updates that occur while a
packet processing procedure is executed; if part of a value’s
storage location is accessed or updated during this time, then
we know the value must be reachable, and we must mark the
value as critical state. Running this analysis offline is not an
option, because the observed creation, destruction, reading,
and writing of values depends on the input packets.

While an online analysis is simple in principle, the com-
putational overhead can cripple a middlebox’s performance.
We used Dyninst [2] to augment the PRADS asset detection
system [6] with code that tracks all memory (de)allocations,
as well as all memory reads/writes during packet processing.
Our modified middlebox ran 13× slower!

Fortunately, exact measures of object lifetime and reacha-
bility are not essential to identifying critical middlebox state.
While this information improves precision—we want few
non-critical values to be identified as critical—our first-order
concern is soundness—all critical values must be identified.

3.1.2 Escape Analysis
Escape analysis is one way to identify dynamically allo-
cated values whose lifetimes exceed the lifetime of any
packet processing procedure. This analysis identifies ref-
erences that “escape” the scope of a procedure—through a
return value, a global variable, or a reference value provided
as a parameter—thus allowing the referenced values, and
any values reachable through arbitrarily many dereferences,
to be used outside of the procedure [21, 26].

Escape analysis works as follows [26]: Within each pro-
cedure, identify expressions that dynamically create new
values (e.g., calls to malloc()). These expressions are
called resolved sources, because they bring values into ex-
istence at run time; the expressions also serve as static rep-
resentations of values [18]. Next, perform intra-procedural
data-flow analysis to determine which of the resolved sources
may be returned by the procedure. Lastly, perform inter-

4 2016/1/14

Identify packet
processing proc.

Escape
analysis

Identify values created
before packet processing

Identify values used
in packet processing

Identify
top-level variables

Figure 4: Steps to identify critical middlebox state

procedural data-flow analysis to determine which resolved
sources may be passed between procedures, and thus may
be returned by a procedure earlier in the call graph.

Escape analysis is just a part of what we need to identify
all critical middlebox state. We also need analyses that iden-
tify: (i) all packet processing procedures, (ii) values whose
lifetime begins prior to packet processing, and (iii) values
which are actually used in packet processing procedures. We
describe each of these analyses below. The complete set of
steps is shown in Figure 4.

3.1.3 Identifying Packet Processing Procedures
To identify values that escape from packet processing proce-
dures, we need to know which procedures fall into this cat-
egory. Our analysis to identify these procedures is based on
a key property of middleboxes: all packet processing starts
with receiving a packet. Thus, any procedure whose invo-
cation depends on the result of a packet receive function
may be a packet processing procedure. Most middleboxes
use standard library/system functions to receive packets—
e.g., pcap loop, or recv—so we can easily identify these
calls and the variable pointing to the received packet.

We use program slicing [17] to identify procedures whose
invocation depends on the received packet. A forward slice
is the set of statements that are affected by the values of a
set of variables starting from a specific point in the program.
A backward slice is the set of statements that do affect the
values of variables at a specific point in the program.

Slices are computed using a system dependence graph
(SDG), which captures the control and data dependencies
between procedures in a program. An SDG consists of multi-
ple program dependence graphs (PDGs)—one for each pro-
cedure. Each PDG contains vertices for each statement (i.e.,
program point) in the procedure, along with data and control
dependence edges between those statements. A data depen-
dence edge from program point p to program point q is cre-
ated if there is an execution path between p and q, and, for
some variable v, p may update v’s value (or a value reachable
through arbitrarily many dereferences), and q may read v’s
value (or a value reachable through arbitrarily many derefer-
ences). A control dependence edge from p to q is created if p
is a conditional statement, and whether or not q executes de-
pends on p. In the SDG, interprocedural control dependence
edges connect procedure call sites with the entry point of the
called procedure, and interprocedural data dependence edges
represent the flow of the data between a procedure’s input

1 void main () {
2 i n t N = 5 ;
3 int factorial = 1 ;
4 int i = 0 ;
5 whi le (i <= N) {
6 i = i + 1 ;
7 factorial = multiply(factorial,i) ;
8 }
9 i f (N > 0) {

10 p r i n t f (factorial) ;
11 } }
12 i n t multiply(int a, int b) {
13 re turn a*b ;
14 }

(a) Program to compute factorial; statements in red are part of the
backward data dependence slice for the variable factorial at line 10

entry main

entry multiply

result = a * b

ret = resultb = b
ina = a

in

a
in
=factorial b

in
= i factorial = ret

call multiply

print factorial

factorial = 1

i = 0

while i < N

N = 5

if N > 0

i = i + 1

legend

control edge

data edge

PDG – main()

PDG – multiply()

(b) System dependence graph (SDG) for the factorial program; green
edges indicate data dependencies and blue edges indicate control de-
pendencies; light yellow nodes represent formal and actual parameters,
while dark yellow nodes represent return values

Figure 5: Slicing example

parameter(s) and return value. Figure 5b shows the SDG and
PDGs for the example program shown in Figure 5a.

Given a middlebox’s SDG, we can compute a forward
slice from a packet receive function call for the variable
which stores the received packet. We consider any procedure
appearing in the slice to be a packet processing procedure.
We compute forward slices from every packet receive func-
tion call site and take the union of the procedures appearing
within all such forward slices.

We originally considered using calls graph to identify all
packet processing procedures. The analysis is simple: con-
struct a call graph starting from each procedure called from
within the packet receive loop; any procedure appearing in
one of these call graphs is a packet processing procedure.
However, this approach does not capture packet processing
procedures that are called indirectly. For example, the Squid
caching proxy does some initial processing of data received
from a socket, then puts an event on a queue to trigger more

5 2016/1/14

processing of the input through later calls to additional pro-
cedures. Our slice based approach is able to capture these
indirect calls, because the SDG contains a data dependence
edge from the statement that creates the event to the state-
ment that calls a later procedure based on the event value(s).

3.1.4 Values Created Before Packet Processing
While escape analysis can be applied to the identified packet
processing procedures to construct a list of dynamically allo-
cated values that escape these procedures, this analysis will
not identify critical values whose lifetime begins prior to
packet processing. This includes values created: (i) when the
program starts—this is the case for the values of global and
static variables; or (ii) after the program starts but before
any packet processing procedure is invoked—this is the case
for values dynamically allocated in middlebox initialization
procedures, or values of local variables declared in proce-
dures earlier in the call stack (i.e., before the invocation of
any packet processing procedure).

Global and static variable declarations can serve as static
representations for values of type i. Identifying values
of type ii requires us to apply the techniques from Sec-
tions 3.1.2 and 3.1.3 in a slightly different way: identify all
procedures called prior to packet processing by computing a
forward slice from main, and identify all values that escape
these procedures using escape analysis.

We have now identified all values that satisfy the first
criteria for critical middlebox state: values with a lifetime
longer than the lifetime of any packet processing procedure.

3.1.5 Values Used in Packet Processing Procedures
Next, we need to narrow the above set of values to those that
also satisfy the second criterion: values used within some
packet processing procedure. For a value v to be used within
some packet processing procedure, there must be a statement
within a packet processing procedure that contains a variable
whose value is v, or a variable whose value can be used to
reach v through arbitrarily many pointer dereferences.

In the simplest case, a statement contains one of the
global or static variables identified in our first phase of anal-
ysis. If any such statement occurs within any packet pro-
cessing procedure, then we definitively know that the value
of that global or static variable, or a value reachable through
arbitrarily many dereferences, is critical middlebox state.

The more challenging case is when a statement contains a
non-static local variable, including formal parameters. If the
variable is a pointer, then it’s possible the variable points to
critical middlebox state. (Non-pointer local variables can be
ignored.) Standard Andersen or Steengsaard pointer analy-
sis [9, 27] can provide this information. Andersen’s algo-
rithm (the flow-insensitive and context-insensitive version)
works as follows: Create an abstract value node for each
global variable, local variable, and dynamic memory alloca-
tion expression in the entire program. Start with an empty
points-to set for each variable in the program. For each as-

signment statement, apply a pre-defined subset constraint,
selected based on the form of the assignment, to update
the points-to set for the variable on the left-hand-side of
the assignment. For example, for the statement y = &x, the
points-to set for y is updated to contain the abstract value
node for x in order to satisfy the subset constraint y ⊇ x.
Continue to update points-to sets until no sets change fur-
ther.

After computing the points-to sets for all local variables
in all packet processing procedures, we compute the inter-
section between the points-to set for each variable and the
set of values with a lifetime longer than the lifetime of any
packet processing procedure. Any values that intersect are
marked as critical middlebox state.

3.1.6 Critical Top-Level Variables
While we have achieved the goal laid out at the beginning
of this section—identify all critical middlebox state—we
need to provide more information to enable a middlebox to
be modified to export/import these values. In particular, we
need to provide a “handle” that can be used in code to access
the critical values identified by our analyses.3 These can be
identified by first computing a points-to set for each global,
static, and local variable that is in scope immediately outside
the packet receive loop (Figure 1), and then computing the
intersection of each variable’s points-to set with the set of
critical values identified by our analysis. If the intersection
is non-null, then we mark that variable as a critical top-level
variable, and it then becomes a handle.

3.1.7 Soundness
We now prove the soundness of our analyses. Escape anal-
ysis [26], slicing [17], and pointer analysis [9] have already
been proven sound.

Theorem 1. If a middlebox uses standard packet receive
functions, then our analysis identifies all packet processing
procedures.

Proof. For a procedure to perform packet processing: (i)
there must be a packet to process, and (ii) the procedure
must have access to the packet, or access to values derived
from the packet. The former is true only after a packet re-
ceive function returns. The latter is true only if some variable
in a procedure has a data dependency on the received packet.
Therefore, a forward slice computed from a packet receive
function over the variable containing (a pointer to) the packet
will identify all packet processing procedures.

Theorem 2. If a value is critical middlebox state, then our
analysis outputs a critical top-level variable containing this
value, or containing a reference from which the value can be
reached (through arbitrarily many dereferences).

3 The expressions output by escape analysis are not appropriate handles,
because they simply indicate how a value came into existence, not how the
value can be accessed outside of the procedure in which it was allocated.

6 2016/1/14

Proof. Assume no critical top-level variable is identified for
a particular critical value. By the definition, a critical value
must (i) have a lifetime longer than the lifetime of any packet
processing procedure, and (ii) be used within some packet
processing procedure. For a value to be used within a packet
processing procedure, it must be the value of, or be a value
reachable from the value of, a variable that is in scope in that
procedure. Only global variables and the procedure’s local
variables will be in scope.

Since we identify statements in packet processing pro-
cedures that use global variables, and points-to analysis is
sound [9], our analysis must identify a global variable used
to access/update the value; this contradicts our assumption.

This leaves the case where a local variable is used to ac-
cess/update the value. When the procedure returns the vari-
able’s value will be destroyed. If the variable’s value was
the critical value, then the value will be destroyed and can-
not have a lifetime beyond the packet processing procedure;
this is a contradiction. If the variable’s value was a reference
through which the critical value could be reached, then this
reference will be destroyed when the procedure returns. As-
suming a value’s lifetime ends when there are no longer any
references to it, the only way for the critical value to have a
lifetime beyond any packet processing procedure is for it be
reached through another reference. The only such reference
that can exist is through a critical top-level variable. Since
points-to analysis is sound [9] this variable would have been
identified, which contradicts our assumption.

A list of top-level variables is insufficient information
to optimize state transfers; simply transferring all identified
variables can lead to unnecessary overhead and hurt perfor-
mance. In Sections 3.2–3.4, we present a set of techniques to
progressively improve the precision of state transfer/cloning,
without impacting output equivalence.

3.2 Updateable Middlebox State
Knowing whether a value is updated during packet process-
ing can aid in minimizing the size of future state transfers.
Static analysis can give us an approximate answer as to
whether a value will be updated at run time.

To ensure we don’t miss transferring some updated state
necessary for output equivalence, updateable state must
never be marked read-only; Section 3.2.2 proves our analysis
is sound in this regard. We can tolerate read-only state being
marked as updateable; this degrades efficiency but doesn’t
impact output equivalence.

3.2.1 Analysis Details
Identifying state updates in packet processing procedures
is similar to identifying uses of state in these procedures
(Section 3.1.5). The key difference is that we only consider
assignment statements. If an assignment is made to one
of the top-level variables identified in our first phase of
analysis, then we know the value of that variable may be

updated during packet processing, and the variable should
be marked as updateable.

Otherwise, we need to determine if the variable is a
pointer,4 and perform pointer analysis to identify all values
reachable from the variable. We compute the intersection of
the points-to set for the variable on the left-hand-side of the
assignment statement and the points-to set for each top-level
variable. If the intersection is non-null, then we mark the
top-level variable as updateable.

After considering all assignment statements in packet
processing procedures, any top-level variables not marked
as updateable are marked read-only.

3.2.2 Soundness
Theorem 3. If a top-level variable’s value, or a value reach-
able through arbitrarily many dereferences starting from this
value, may be updated during the lifetime of some packet
processing procedure, then our analysis marks this top-level
variable as updateable.

Proof. According to the language semantics, scalar and
compound values can only be updated via assignment state-
ments. According to Theorem 1, we identify all packet pro-
cessing procedures. Therefore, identifying all assignment
statements in these procedures is sufficient to identify all
possible value updates that may occur during the lifetime of
some packet processing procedure.

The language semantics also state that the variable on the
left-hand-side of an assignment is the variable whose value
is updated. Thus, when a top-level variable appears on the
left-hand-side of an assignment, we know its value, or a
reachable value, is updated. Furthermore, flow-insensitive
context-insensitive pointer alias is provably guaranteed to
identify all possible points-to relationships [9]. Therefore,
any assignment to a variable that may point to a value also
pointed to (indirectly) by a top-level variable is identified,
and the top-level variable marked updateable.

3.3 State Impacting Different Types of Output
As mentioned in Section 2.3, forgoing output equivalence
for some forms of output (e.g., logs) in exchange for small-
er/less frequent state transfers/clones may be an important
optimization in some scenarios. To provide this flexibility,
we need to know whether a particular value affects packet
output, log output, or both.5 Similar to before, we must not
under-estimate which state affects packet output, or log out-
put, to ensure soundness. And, we want to avoid overesti-
mating as much as possible to maximize precision.

We achieve this using two key insights. First, middle-
boxes typically use standard libraries and system calls to

4 Assignments to non-pointer non-top-level variables can be ignored since
the variable’s value will be destroyed when the procedure returns.
5 Values which do not affect either form of output are unnecessary for the
middlebox to maintain. Our analysis identifies these values, so statements
creating, reading, or updating these values can be pruned from the code.

7 2016/1/14

produce packet and log output: either PCAP (pcap dump,
pcap inject, etc.) or socket (send, sendto, etc.) functions
for the former, and regular I/O functions (write, printf,
etc.) for the latter.6 Second, the output produced by these
functions can only be impacted by a handful of parameters
passed to these functions. Next, we show how to leverage
these insights together with program slicing.

3.3.1 Analysis Details
We start by identifying all statements that call library or sys-
tem functions that produce packets or log output. Then, we
compute a backward slice from each call site to determine
what statements affect (i) whether the call occurs, and (ii)
the output the function produces. Since the output produced
by a packet (or log) output function depends on the values of
the actual parameters, or values reachable through arbitrarily
many dereferences starting from these values, we can find all
relevant program points by setting the variables for which a
backward slice is being computed to those in the parameters
of the call to the output function.

For all statements in a backward slice, we determine
whether any variable in a given statement (i) is a top-level
variable, or (ii) is a pointer to a value of a top-level variable,
or a value reachable through arbitrary many dereferences
starting from the value of a top-level variable. We mark the
corresponding top-level variable as impacting packet (or log)
output if at least one of these conditions is true for at least
one statement in the backward slice. We compute backward
slices from all packet (or log) output function call sites, and
repeat this process for each slice.

The result of this analysis is three lists of top-level vari-
ables: those that may impact packet output, those that may
impact log output, and those that may impact both types of
output. If output equivalence is only required for packets, or
logs, then only the values of those top-level variables (or val-
ues reachable through arbitrarily many dereferences starting
from those values) must be transferred or cloned.

3.3.2 Soundness
Theorem 4. If a top-level variable’s value, or a value reach-
able through arbitrarily many dereferences starting from this
value, may affect a call to a packet output function or the out-
put produced by the function, then our analysis marks this
top-level variable as impacting packet output.

6 If middleboxes use non-standard output functions, our analysis can easily
be extended to consider these functions.

Proof. Follows from SDG construction soundness [15, 17].7

The same theorem and proof applies to log output as well.

3.4 Traffic Impacting Middlebox State
Another opportunity to optimize state transfers/clones arises
from the fact that specific values are only accessed/updated
when processing specific traffic (Section 2.3). To implement
this optimization without compromising output equivalence,
we need to know: for each value, what are all possible
packets that will trigger a read or update to that value.

We can define a set of possible packets in terms of a flow
space—a set of tuples each consisting of a packet header
field (e.g., EtherType, protocol, and source and destination
IPs and ports) and a value range (e.g., a subnet address, port
number, or wildcard). However, we can only determine the
values of the tuples at run time, due to dynamic allocation
of values and multiple possible execution paths in packet
processing procedures.

To overcome this challenge, StateAlyzr leverages com-
mon patterns in middlebox code, discussed next. It is impor-
tant that our analysis does not identify more header fields
than those that actually define the flow space for a value,
otherwise we may inadvertently assume the value has a finer-
grained flow space and incorrectly skip transferring the value
at run time. In Section 3.4.3, we prove our analysis is sound
in this regard. In Section 6, we show that our analysis is pre-
cise (i.e., not identifying header fields that are part of the
definition of a value’s flow space is rare).

3.4.1 Organization of Middlebox State
We leverage a common design pattern: When a middlebox
needs to maintain state of the same type for different con-
nections, applications, subnets, URLs, etc., it typically uses
a simple data structure (e.g., hash table or linked list) to keep
the state organized. When processing a packet, the middle-
box uses packet header fields to lookup the entry in the data
structure that contains a reference to the value(s) that should
be read/updated for this packet. In the case of a hash table,
the middlebox computes a hash table index from the packet
header fields to identify the entry pointing to the relevant
value(s). For a linked list, the middlebox iterates over en-
tries in the data structure and compares packet header fields

7 In more detail: If/when a packet output function is called is determined
by a sequence of conditional statements. The path taken at each conditional
depends on the values used in the condition. Control and data dependency
edges in a system dependence graph capture these features. Since SDG
construction is sound [15, 17], we will identify all such dependencies, and
thus all values that may affect a call to a packet output function.
Only parameter values, or values reachable through arbitrarily many deref-
erences starting from these values, can affect the output produced by a
packet output function. Thus, knowing what values a parameter value de-
pends on is sufficient to know what values affect the output produced by an
output function. Again, since SDG construction is sound, we will identify
all such dependencies.

8 2016/1/14

against the value(s) pointed to by the entry to determine
which entry points to the relevant value(s).

It is possible a middlebox has just one value of a par-
ticular type (e.g., a count of TCP packets) that is only
accessed/updated when processing particular packets. Ac-
cess/update of such values depends on a conditional state-
ment that checks the value(s) of some field(s) in the packet.

3.4.2 Analysis Details
We leverage the above design pattern to develop a heuristic
for statically identifying the header fields that define the flow
space for a value.

We assume middleboxes use hash tables or linked lists to
organize their values,8 and we assume entries in these data
structures will be accessed using: square brackets, e.g.

entry = table[index];
pointer arithmetic, e.g.

entry = head + offset;
iteration, e.g.

while(entry->next!=null){entry=entry->next;}
for(i=0; i<list.length; i++) {...}

or recursion. The first step of our analysis is thus to identify
all statements like these where a top-level variable is on the
right-hand-side or in the conditional expression.

When square brackets or pointer arithmetic are used, we
compute a chop between the variables in this statement and
the variable containing the packet returned by the packet re-
ceive procedure. Chopping combines backward and forward
slicing. A chop between a set of variables U at program point
p and a set of variables V at program point q is the subset of
all points that (i) may be affected by the value of variables
in U at point p, and (ii) may affect the values of variables in
V at point q.

When iteration is used, we identify all conditional state-
ments in the body of the loop. For each of these conditional
statements, we compute a chop between the packet returned
by the packet receive procedure and the variables in the con-
ditional expression. We output the resulting chops, which
collectively contain all conditional statements that are re-
quired to lookup a value in a linked list data structure based
on a flow space definition.

3.4.3 Soundness
Theorem 5. If a middlebox uses standard patterns for fetch-
ing values from data structures, and the flowspace for a top-
level variable’s value (or a value reachable through arbi-
trarily many dereferences starting from this value) is not
constrained by a particular header field, then our analysis
does not include this header field in the flowspace fields for
this top-level variable.

Proof. A header field can only be part of a value’s flows-
pace definition if there is a data or control dependency be-

8 Our analysis can easily be extended to other data structures.

tween that header field in the current packet and the fetch-
ing of an entry from a data structure. It follows from the
proven soundness and precision of flow-sensitive context-
insensitive pointer analysis [11] that the SDG will not in-
clude false data or control dependency edges. It also follows
from the proven soundness of program slicing [17] that only
data and control dependencies between source variables (i.e.,
the packet variable) and target variables (i.e., the index vari-
able, increment variable, or variable in a conditional inside a
loop) will be included in the chop.

4. Enhancements
The analyses discussed in Sections 3.2, 3.3, and 3.4 all
provide an opportunity to clone state more efficiently: If
critical state is read-only, then it only needs to be cloned
once. If output equivalence of logs is unnecessary, then only
state that impacts packet output needs to be cloned. If traffic
will be distributed among multiple middlebox instances in
the case of failure, then only state whose flow space overlaps
with the flow space assigned to a specific instance needs to
be cloned to that instance.

However, the potential performance gains from these
optimizations are limited by the precision achievable with
static analysis. For example, static analysis can only identify
whether a top-level variable’s value, or value(s) reachable
through arbitrarily many dereferences, may be updated at
some time during the middlebox’s execution; we cannot de-
termine exactly which values are updated, and when.

To achieve higher precision, we must use (simple) run
time monitoring. For example, we can track, at run time,
whether part of a compound value is updated during packet
processing, allowing us to know exactly what state we need
to clone to achieve transparent failover.

To implement this monitoring, we must modify the mid-
dlebox to set an “updated bit” whenever a value reachable
from a critical top-level variable is updated during packet
processing. Figure 6a shows such modifications, in red, for
a simple middlebox. We create a unique updated bit for
each critical top-level variable—there are three such vari-
ables in the example—and we set the appropriate bit before
any statement that updates a value that may be reachable
from the corresponding top-level variable.

We use the same analysis discussed in Section 3.2 to de-
termine where to insert statements to set updated bits. In par-
ticular, we find all assignment statements in packet process-
ing procedures, and we compute the intersection between the
points-to sets for the variable on the left-hand-side of the as-
signment statement and the points-to set for each top-level
variable. For any top-level variable for which the intersec-
tion is non-null, we insert a statement—just prior to the as-
signment statement—that sets the appropriate updated bit.

While inserting code before every update statement guar-
antees we always set the appropriate updated bits, this adds
a lot more code than necessary: if one assignment statement

9 2016/1/14

1 s t r u c t conn t b l [1 0 0 0] ; // Assigned id 0
2 i n t c o u n t ; // Assigned id 1
3 i n t t c p c o u n t ; // Assigned id 2
4 char updated[3];
5 void main () {
6 whi le (1) {
7 char ∗p k t = r e c v () ;
8 updated[1] = 1;
9 c o u n t = c o u n t + 1 ;

10 s t r u c t ∗ i p h d r i = g e t I p H d r (p k t) ;
11 i f (i−>p r o t o c o l == TCP) {
12 hand leTcp (& t c p c o u n t , &t b l [hash (p k t)] , ge tTcpHdr (p k t)) ;
13 } } }
14 void hand leTcp (i n t ∗c , s t r u c t conn ∗s , s t r u c t t c p h d r ∗ t) {
15 updated[2] = 1;
16 c = c + 1 ;
17 updated[0] = 1;
18 s−>f l a g s = s−>f l a g s | t−>f l a g s ;
19 i f (t−>f l a g s & ACK)
20 updated[0] = 1; // Pruned
21 s−>acknum = t−>acknum ;
22 } }

(a) Example middlebox code instrumented for update tracking at run time;
statements in red are inserted based on our analysis

entry updated[2] = 1

updated[0] = 1

updated[0] = 1

C = c + 1

S->flags = s->flags | t->flags

if (t->flags & ACK)

S->acknum = t->ackum

{ } { 2}

{ 2,0}

{ 2}

{ 2,0} { 2,0}

exit

{ 2,0}

{ 2,0} { 2,0}

(b) Annotated control flow graph used for pruning redundant updated-
bit-setting (shaded) statements

Figure 6: Implementing update tracking at run time

always executes before another assignment statement, and
they always update the same value, then we only need to add
code before the first assignment statement to set the updated
bit. For example, line 21 in Figure 6a updates the same com-
pound value as line 18, so the code on line 20 is redundant
and unnecessary.

We use a straightforward control flow analysis to prune
unneeded updated-bit-setting statements. First, we construct
a control flow graph for each modified packet processing
procedure. Next, we perform a depth-first traversal of each
control flow graph, tracking the set of updated bits that have
been set along the path; as we traverse each edge, we label
it with the current set of updated bits. Figure 6b shows this
annotated control flow graph for the handleTcp procedure
shown in lines 14-22 of Figure 6a. Lastly, for each updated-
bit-setting statement in a procedure’s control flow graph,
we check whether the bit being set is included in the label
for every incoming edge. If this is true, then we prune the
statement. For example, we prune line 20 in Figure 6a.

5. Implementation
Analysis. We implement StateAlyzr using CodeSurfer [1].
CodeSurfer has built-in support for constructing control
flow graphs, performing Andersen’s flow-insensitive and
context-insensitive pointer analysis [9], constructing pro-
gram and system dependence graphs, and computing for-

ward and backward slices and chops for C/C++ code. We
use CodeSurfer’s Scheme API to access the output from
these analyses and perform additional analysis necessary to
produce the appropriate output.
High Availability. We use the output from StateAlyzr to add
high availability support to PRADS. PRADS is an off-path
monitoring middlebox that identifies and logs basic informa-
tion about active hosts in the network (e.g., operating system,
uptime, etc.) and the services running on them (e.g., applica-
tion name, version, etc.). PRADS maintains per-connection
and per-host state, using two hash tables to organize the com-
pound values of each type. It also stores statistics and con-
figuration settings in a global compound value.

We added code to PRADS to export/import the aforemen-
tioned critical state. We used the output of our first analy-
sis phase (Section 3.1) to know which top-level variables’
values we needed to export, and where in a hot-standby we
should store them. We used the output of our fourth analysis
phase (Section 3.4) as the basis for code that looks up per-
connection and per-host values in the top-level hash tables.
This code takes a flowspace as input and returns an array
of serialized values. We use OpenNF [16] to transfer seri-
alized values to a hot-standby. Import code, again written
on the basis of the output from our first and fourth phases
of analysis, deserializes the state and stores it in the appro-
priate location. We also implemented the enhancement dis-
cussed in Section 4 to track updates to write-able variables.
We added statements at 44 points in the code to mark up-
dated bits. Note: PRADS does not produce/impact packet
output.

6. Evaluation
We report on the outcomes of applying StateAlyzr to four
popular open source middleboxes: PRADS [6], Snort IDS [7],
HAproxy load balancer [3], and OpenVPN [5]. All four mid-
dleboxes are written in C. We address the following sets
of general questions: (i) How much critical state do these
middleboxes maintain? And, what relative fractions of this
state are updateable, and packet or log output-impacting?
(ii) How efficient is StateAlyzr? (iii) How does StateAlyzr
compare against other candidate approaches for identify-
ing critical state? Additionally, in the context of a highly
available PRADS implementation, we address the following
questions: (iv) Does StateAlyzr ensure output equivalence?
(v) To what extent do StateAlyzr’s mechanisms for identify-
ing a state object’s key space and whether a particular piece
of state was updated by a packet help?

6.1 Critical State and its Properties
Table 2 shows the number of critical top-level variables iden-
tified by StateAlyzr in the four open source middleboxes
mentioned above. Snort is the most complex middlebox we
analyze (≈275K lines of code) and has the largest number
of critical top-level variables (333); the opposite is true for

10 2016/1/14

Top-level Updateable Vars impacting
Mbox vars vars packet output
PRADS 29 10 N.A.
Snort 333 148 N.A.
HAproxy 168 107 91
OpenVPN 126 101 89

Table 2: Critical top-level variables and their properties

Code compilation Analysis Peak memory
Mbox time (hrs) time (hrs) usage (GBs)
PRADS 0.2 0.25 0.3
Snort 1.5 19 6
HAproxy 0.25 6 6
OpenVPN 0.5 5 7.3

Table 3: Time and memory usage

PRADS which has just 10K lines of code (and 29 critical
variables). Table 2 also includes the number of updateable
top-level variables, as well as the number of top-level vari-
ables that impact packet and log output. We observe that 33-
60% of the critical top-level variables are updateable. Be-
ing off-path, PRADS has no variables that impact packet
output, and 60% (6 out of 10) of updateable variables im-
pact log output; Snort is similar (88 out of 148). For on-path
HAproxy (OpenVPN), 85% (88%) of updateable variables
affect packet output.

The complexity of middlebox code, (Table 1) coupled
with the high number of critical variables we identify, points
to the fact that manually identifying critical state, and opti-
mizing its transfer, is extremely difficult. And, the non-trivial
reductions we observe in going from all critical top-level
variables to updateable ones and further to those impacting
packet output show that our techniques in Section 3.2 and
Section 3.3 offer useful levels of precision. However, we are
as yet unsure if our techniques’ precision is optimal, a topic
we leave for future work.

6.2 Analysis Efficiency
Table 3 shows the time and resources required to run our
analysis. CodeSurfer computes data and control dependen-
cies and points-to sets at compile time, so the middleboxes
take longer than normal to compile. This phase is also mem-
ory intensive, as illustrated by the peak memory usage re-
sults. Again, the most complex middlebox, Snort, takes the
longest to compile and analyze: ≈20.5 hours in total. How-
ever, StateAlyzr only needs to be run once, and can be run
offline, so this is not a major concern.

6.2.1 Comparison with Other Approaches
We compare StateAlyzr’s efficiency and completeness against
three alternative approaches: (i) run time analysis, (ii) sym-
bolic execution, and (iii) manual code inspection.

We run PRADS and Snort with/without the run time mon-
itoring discussed in Section 3.1.1—i.e., tracking all memory
(de)allocations and all memory reads/writes during packet

PRADS Snort0

10

20

30

40

50

60

70

80

Ru
n

Ti
m

e
(s

ec
on

ds
) Normal Execution

with Monitoring

Figure 7: Overhead of using run time analysis to identify
critical middlebox state

processing. We employ a university-to-cloud trace of 1 mil-
lion packets collected at our campus border router for this
analysis. As shown in Figure 7, it takes PRADS and Snort
13× and 11× longer, respectively, to process the packet trace
when run time analysis is used. Thus, exhaustive run-time
monitoring is impractical w.r.t. enabling redistribution.

We symbolically execute PRADS using S2E [10] to iden-
tify critical state. After 8 hours—16× longer than it takes
to run StateAlyzr—S2E had only covered 13% of the code.
Given that PRADS is the simplest middlebox we test (only
≈10K lines of code), it is clear that symbolic execution is
impractical.

We consider manually inspecting the middlebox code to
identify critical middlebox state. The authors of OpenNF [16]
informed us that it took them several days to manually iden-
tify the critical state in PRADS. We compared StateAlyzr’s
output for PRADS against the variables contained in the
state transfer code added by the authors of OpenNF. We
found that they missed an important compound value that
contains a few counters along with configuration settings;
the latter are never updated during packet processing. State-
Alyzr also found four other global variables—tos, tstamp,
in pkt, and mtu—but did not mark these variables as affect-
ing packet output or log output. We verified through manual
inspection of the code that these values are updated as pack-
ets are processed, but they are never used; these variables
can thus be removed from PRADS without any impact on
its output, pointing to another benefit of StateAlyzr—code
clean-up.

6.3 Highly Available PRADS
We use the highly-available version of PRADS (Section 4) to
evaluate StateAlyzr’s output equivalence, as well as to quan-
tify the run-time benefits of StateAlyzr’s optimization tech-
niques in avoiding unneeded state transfer, further under-
scoring the usefulness of the precision they offer.

6.3.1 Output Equivalence
To evaluate the output equivalence of our highly available
PRADS, we use two instances, one as primary and the other
in hot standby mode. The primary middlebox sends a copy
of the state to the hot standby after processing each packet.
We use another university-to-cloud packet trace with around
700k packets for this evaluation. The primary instance pro-

11 2016/1/14

cesses the first half of the trace file till a random point and
the hot standby takes over after that. We compare the assets
logged by PRADS in the scenario where a single instance
processes the complete trace file against concatenated logs
of the primary and hot standby. We considered the follow-
ing models, reflecting progressive application of three dif-
ferent optimizations in Sections 3.2, 3.4, and 4:9 1) where
primary instance sends a copy of all the updateable states to
the hot standby, 2) where primary instance only sends the
state which applies to the flowspace of the last processed
packet, and 3) where in addition to considering the flows-
pace, we also consider which top level variables are marked
as updated for the last processed packet. For all three mod-
els, there was no difference in the assets logged in compari-
son with the scenario where all the traffic was processed by
a single instance, implying output equivalence.

6.3.2 Fine Grained Marking
To evaluate the benefits of code instrumentation for mark-
ing whether some updateable state is actually updated for
a particular packet, we compare the amount of per packet
data transferred between the primary instance and its hot
standby for all three models discussed in the previous sec-
tion. Figure 8 shows the average case results for PRADS for
all three models. Transferring state which only applies to the
flow space of last processed packet, i.e., the second model,
reduces the data transferred by 305×; we also found that
output equivalence was maintained. This provides empirical
evidence of the soundness and high precision of our tech-
niques for identifying which traffic can update/read a partic-
ular piece of state (Section 3.4).

Furthermore, we found that the third model, i.e., run
time marking of updated state variables (Section 4) further
reduces the amount of data transferred by 2×, on average,
relative to the second model. This is due to the fact that not
all values are updated for every packet: the values pertaining
a specific connection are updated for every packet of that
connection, but the values pertaining to a particular host
and its services are only updated when processing certain
packets. This behavior is illustrated in Figure 9, which shows
the size of the state transfer after processing each of the first
200 packets in a randomly selected flow. Sending deltas and
compression can help further optimize data transfer.

We measured the increase in per packet processing time
purely due to the code instrumentation needed to identify
state updates for highly available PRADS. We observed an
average increase of 0.04usec, which is around 0.14% of the
average per packet processing time for unmodified PRADS.

7. Other Related Work
Aside from the works discussed in Sections 2 and 3 [9, 16,
17, 21, 23–27, 29] StateAlyzr is related to a few other efforts.

9 Note: PRADS has no packet output-impacting state.

3000
3200
3400
3600
3800
4000

All updateable state Flowspace Flowspace + marking 0
5

10
15
20
25
30
35
40

Av
er

ag
e

pe
r p

ac
ke

t s
ta

te
 tr

an
sf

er
 (K

B)

Figure 8: Per packet state transfer for three different models

0 50 100 150
packet number

0

5

10

15

20

25

30

pe
r p

ac
ke

t s
ta

te
 tr

an
sf

er
 (K

B)

Flowspace + marking
Flowspace

Figure 9: Per packet state transfer for a single connection

Some prior studies have focused on transforming non-
distributed applications into distributed applications [19,
28]. However, these works aim to run different parts of an ap-
plication at different locations/machines. We want all analy-
sis steps performed by a middlebox to run on one machine,
but we want different machines to run these analysis steps
on a different set of input without changing the collective
output from all machines.

Dobrescu and Argyarki have used symbolic execution
to verify middlebox code satisfies crash-freedom, bounded-
execution, and other important safety properties [13]. They
employ small, Click-based middleboxes [20] and abstract
away accesses to middlebox state. In contrast, our analysis
focuses on identifying state needed for correct middlebox
operation and works with regular, popular middleboxes.

8. Summary
Our goal was to enable developers of arbitrary applications
to automatically identify locations in their code that main-
tain live state that must be migrated or cloned when an input
workload is dynamically redistributed. Today, this has to be
done manually by application developers. Given the com-
plexity of application code, this is a daunting task. In this
paper, we showed how static analysis techniques can be ap-
plied toward achieving this goal. Focusing on middleboxes,
we showed how to leverage their code structure and common
design patterns to identify what state is critical, updateable,
packet or log output-impacting, and read/updated when pro-
cessing traffic in a given flow space. We formally proved

12 2016/1/14

the soundness of our techniques. We applied StateAlyzr to
4 open source middleboxes and showed that our techniques
remove unneeded state transfers. Finally, we showed how
our techniques can be used toward an efficient, highly avail-
able middlebox design. While our focus was on middle-
boxes, we believe that the same lessons—leveraging com-
mon structures and design patterns across applications of a
given class—can be employed to enable live state handling
in more generic application settings.

References
[1] Codesurfer. http://grammatech.com/research/

technologies/codesurfer.

[2] Dyninst: Putting the Performance in High Performance Com-
puting. http://dyninst.org.

[3] HAProxy: The reliable, high performance TCP/HTTP load
balancer. http://haproxy.1wt.eu/.

[4] Kubernetes. http://kubernetes.io.

[5] OpenVPN. http://openvpn.net.

[6] Passive Real-time Asset Detection System. http://prads.
projects.linpro.no.

[7] Snort. http://snort.org.

[8] Squid. http://squid-cache.org.

[9] L. O. Andersen. Program analysis and specialization for
the C programming language. PhD thesis, University of
Cophenhagen, 1994.

[10] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A plat-
form for in-vivo multi-path analysis of software systems. In
ASPLOS, 2011.

[11] J.-D. Choi, M. Burke, and P. Carini. Efficient flow-sensitive
interprocedural computation of pointer-induced aliases and
side effects. In POPL, 1993.

[12] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson,
and A. Warfield. Remus: High availability via asynchronous
virtual machine replication. In NSDI, 2008.

[13] M. Dobrescu and K. Argyarki. Software dataplane verifica-
tion. In NSDI, 2014.

[14] Y. Dong, W. Ye, Y. Jiang, I. Pratt, S. Ma, J. Li, and H. Guan.
COLO: COarse-grained LOck-stepping virtual machines for
non-stop service. In SoCC, 2013.

[15] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization. ACM Trans.
Program. Lang. Syst., 9(3):319–349, July 1987.

[16] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl,
J. Khalid, S. Das, and A. Akella. OpenNF: Enabling innova-
tion in network function control. In SIGCOMM, 2014.

[17] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. ACM Trans. Program. Lang. Syst.,
12(1):26–60, Jan. 1990.

[18] P. Hudak. A semantic model of reference counting and its
abstraction (detailed summary). In ACM Conference on LISP
and Functional Programming (LFP), 1986.

[19] G. C. Hunt and M. L. Scott. The coign automatic distributed
partitioning system. In OSDI, 1999.

[20] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular router. ACM Transactions on
Computer Systems (TOCS), 18:263–297, 2000.

[21] Y. G. Park and B. Goldberg. Escape analysis on lists. In PLDI,
1992.

[22] V. Paxson. Bro: a system for detecting network intruders in
real-time. In USENIX Security (SSYM), 1998.

[23] S. Rajagopalan, D. Williams, and H. Jamjoom. Pico Repli-
cation: A high availability framework for middleboxes. In
SoCC, 2013.

[24] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield.
Escape capsule: Explicit state is robust and scalable. In Ho-
tOS, 2013.

[25] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield.
Split/Merge: System support for elastic execution in virtual
middleboxes. In NSDI, 2013.

[26] C. Ruggieri and T. P. Murtagh. Lifetime analysis of dynami-
cally allocated objects. In POPL, 1988.

[27] B. Steensgaard. Points-to analysis in almost linear time. In
POPL, 1996.

[28] E. Tilevich and Y. Smaragdakis. J-orchestra: Enhancing java
programs with distribution capabilities. ACM Trans. Softw.
Eng. Methodol., 19(1):1:1–1:40, Aug. 2009.

[29] M. Weiser. Program slicing. IEEE Trans. on Software Engi-
neering, SE-10(4):352–357, July 1984.

13 2016/1/14

