
Pratyaastha: An Efficient Elastic Distributed SDN Control Plane

Anand Krishnamurthy, Shoban P. Chandrabose, Aaron Gember-Jacobson
University of Wisconsin–Madison

{anand,shoban,agember}@cs.wisc.edu

ABSTRACT
Several distributed SDN controller architectures have been pro-
posed to mitigate the risks of overload and failure. However, since
they statically assign switches to controller instances and store state
in distributed data stores (which doubles flow setup latency), they
hinder operators’ ability to minimize both flow setup latency and
controller resource consumption. To address this, we propose a
novel approach for assigning SDN switches and partitions of SDN
application state to distributed controller instances. We present
a new way to partition SDN application state that considers the
dependencies between application state and SDN switches. We
then formally model the assignment problem as a variant of multi-
dimensional bin packing and propose a practical heuristic to solve
the problem with strict time constraints. Our preliminary evalua-
tions show that our approach yields a 44% decrease in flow setup
latency and a 42% reduction in controller operating costs.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: [Network archi-
tecture and Design]; C.2.4 [Computer-Communication Net-
works]: [Distributed Systems]

General Terms
Design, Experimentation

Keywords
software defined network controllers

1. INTRODUCTION
Software-defined networking (SDN) centralizes the network

control plane [5, 10], thus enabling (optimal) forwarding decisions
to be made on the basis of a global network view. However, a sin-
gle centralized controller can easily succumb to overload or failure.
Even a very powerful controller will lack the CPU and memory ca-
pacity necessary to maintain complete network state, and react to
all network events, for large, high volume networks.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotSDN’14, August 22, 2014, Chicago, IL, USA.
Copyright 2014 ACM 978-1-4503-2989-7/14/08 ...$15.00.
http://dx.doi.org/10.1145/2620728.2620748 .

Several “logically centralized” but “physically distributed” con-
troller architectures [6, 8, 9, 11, 13] have been proposed to address
this issue. In these architectures, each controller instance is re-
sponsible for the events and actions pertaining to a subset of the
network’s switches.

However, current distributed controller architectures fail to ade-
quately address two important concerns:
(1) Minimizing flow setup latency. Distributed controller archi-
tectures that use a static assignment of switches to controllers [8, 9,
11, 13] are highly susceptible to overload, and increased flow setup
latency, because of their inability to adapt to shifts in traffic load.
Furthermore, architectures that depend on distributed data stores
(or remote procedure calls (RPCs)) [6, 9, 11] can consistently in-
cur 2× higher flow setup latencies (Section 2). This overhead may
be acceptable when forwarding rules are proactively installed, but it
can cripple many SDN applications that depend on fast reactive rule
installation for correction operation: e.g., consistent load balanc-
ing [15], traffic engineering [14], and dynamic traffic filtering [2].
(2) Minimizing controller operating costs through efficient re-
source allocation. Over-provisioning controller resources to ac-
commodate peak load can help reduce spikes in flow setup la-
tency, but this wastes resources and increases operating costs. Dy-
namic resource allocation and re-balancing of controller respon-
sibilities [6] is preferred, but existing architectures only consider
CPU load (or the rate of switch events, which is usually correlated
with CPU load) when assigning switches to controller instances.
They do not consider memory—which is also a critical resource
when application state is stored at controller instances [8, 13]—
or inter-controller communication costs—e.g., a remote procedure
call to install forwarding rules in a switch connected to a different
controller instance consumes network bandwidth and introduces la-
tency overhead.

To address these issues, we propose a novel approach for as-
signing SDN switches and partitions of SDN application state to
distributed controller instances. We first present a new way to parti-
tion application state that considers the dependencies between state
and switches: e.g., two controller instances each handling one end-
point of a tunnel will both depend on application state related to
that tunnel [9]. We then formally model the assignment problem as
a variant of multi-dimensional bin packing. We consider both CPU
and memory, and we impose additional costs when switches and the
application state they depend on are assigned to different bins (i.e.,
controller instances). Since solving this problem is NP-hard, we
propose a practical heuristic that solves the problem within strict
time constraints.

We evaluate our system, called Pratyaastha,1 using a series of
simulations and actual SDN applications. Our results show that

1Pratyaastha means “elasticity” in Sanskrit.

our partitioning and assignment strategies yield a 42% reduction in
operating costs and a 44% decrease in flow-setup latencies.

2. MOTIVATION
Several distributed SDN controller architectures have been pro-

posed [6, 8, 9, 11, 13] to reduce the likelihood of controller over-
load and minimize the impact of controller failures. These architec-
tures run multiple controller instances, with each instance handling
the events (e.g., new flow, link down, etc.) and actions (e.g., install
forwarding rule) pertaining to a subset of SDN switches. Each con-
troller instance also runs a copy of each SDN application (e.g., load
balancing [15], traffic engineering [14], network virtualization [9],
etc.)
Switch Assignment. Switches may be assigned to controller in-
stances based on either a static [8, 9, 11, 12, 13] or dynamic [6]
assignment strategy. Prior work [6] has shown that a static assign-
ment strategy suffers from both overload and inefficient resource
utilization when traffic load shifts. This compromises a controller’s
ability to both react quickly to network events and operate with
minimal resources. In contrast, dynamic assignment allows adjust-
ments to be made in response to the volume of switch events, or cur-
rent CPU load, and controller instances can be (de)allocated when
additional (or less) processing capacity is required.
State Storage and Access. While processing capacity is a key
factor in assigning switches to controller instances, state storage
and access is an even more important issue. Both core controller
modules (e.g., topology discovery) and SDN applications maintain
state that is created and accessed while handling switch events and
invoking switch control actions. Each controller instance must have
access to the state required for handling both the events and actions
pertaining the switches it’s assigned.

A naïve approach is to replicate all state at all controller in-
stances. This ensures the relevant state is always available regard-
less of which switches are assigned to an instance. However,
the volume of state maintained by applications can quickly over-
whelm the memory resources of controller instances [9]. Further-
more, maintaining replica consistency (if necessary) is a daunting
task [13].

Therefore, most existing distributed controller architectures dis-
tribute state among controller instances [8] or use a separate dis-
tributed storage system [6, 9, 11]. However, given that accessing
controller or application state lies in the critical path of handling
switch events, the latency overhead imposed by a distributed stor-
age system can unacceptably increase flow setup latency. Simi-
lar overheads can also occur when state is suboptimally distributed
among controller instances—i.e., another controller instance must
frequently be contacted to access state.

To quantify this latency overhead, we ran our own multi-tenant
virtualized data center application, and compared the overhead of
accessing state stored in a distributed data store versus storing state
in memory at the controller. The application creates a full mesh
of tunnels between all of a tenant’s VMs and stores the details of
each tunnel; upon receiving a packet for a new flow, the application
fetches the tunnel data, checks if the flow is admissible, and installs
forwarding rules in virtual switches at the source and destination
hypervisors. We run the application in a small data center testbed
(12 racks, 3 machines per rack, 3 virtual machine (VM) slots per
machine) with two tenants (2 VMs per tenant). We generate ping
requests between each pair of VMs and measure the RTT of the
first packet for each flow. From the results in Figure 1, we see that
with a distributed data store, there is an≈ 78% increase in RTT for
the first packet of a flow. Such an increase can significantly impact
mice flows that normally complete in just one or two RTTs. Also,

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60

La
te

n
cy

(m
s)

Request no.

State in Distributed datastore
State in Controller main memory

Figure 1: RTT for first packet of a ping request when tunnel
data is accessed from a distributed data store and from in-
memory

from the applications we surveyed, computation time spent during
flow setup was negligible and communication time to access state
from a distributed data store or to install flow rules was the key
factor in flow setup latency.

In summary, we argue that, unlike existing distributed controller
architectures, application state should be stored at controller in-
stances, and SDN switches and application state should be dynam-
ically assigned to controller instances. Both are critical to simulta-
neously minimizing flow setup latency and minimizing controller
operating costs.
Localizing Event Handling and State. Schmid et al. [12] artic-
ulated the implications of using local algorithms to develop effi-
cient coordination protocols in which each controller instance only
needs to respond to events that take place in its local neighborhood.
They solve an orthogonal problem by using near-optimal local al-
gorithms for inherently global tasks to minimize the running time
of the algorithm or to improve the performance. Our work focuses
on partitioning applications’ state and assigning switches to con-
trollers to exploit such locality. The partitioning and aggregation
logic of Onix [9] suggests to partition only when the size of applica-
tion state (Network Information Base—tunnel data in this example)
exceeds the capacity of a single Onix instance (coarse granularity)
and would suffer from the static partitioning problem.

3. PRATYAASTHA ARCHITECTURE
We begin this section by illustrating our approach to partitioning

application state by capturing dependencies with switches (Sec-
tion 3.1). Then, we model and develop an algorithm to solve the
problem of efficiently assigning state partitions and switches to
controller instances such that (1) inter-controller communication
is minimized, thereby keeping flow setup latencies low, and (2) the
number of machines used to run controller instances is minimized,
thereby keeping operating costs low (Section 3.2). Thereafter, we
describe the elastic scaling workflow in our system (Section 3.4).
Finally, we discuss how to leverage this architecture when running
multiple applications in parallel (Section 3.5).

3.1 Partitioning Application State
Prior to assigning application state and SDN switches to con-

troller instances, we must determine the granularity at which ap-
plication state should be partitioned. For a given application, there
may be several reasonable ways to divide its state: e.g., a multi-
tenant virtualized data center application maintains state for indi-
vidual tunnels, each of which is associated with a specific tenant;

Figure 2: State partitioning for an intrusion detection applica-
tion

Figure 3: State partitioning for a traffic engineering applica-
tion

we could partition this state at the granularity of groups of tenants,
individual tenants, groups of tunnels, or individual tunnels.

Choosing a suitable partitioning granularity is critical to finding
an assignment that optimally satisfies the dual objectives discussed
above. A partitioning granularity that is too coarse reduces the set
of potential assignments, thereby limiting the extent to which we
can find an assignment that satisfies our goals. In contrast, too fine
of a partitioning granularity unnecessarily increases the complexity
of solving the assignment problem, thereby limiting our ability to
find an optimal assignment in bounded time.

An ideal partitioning of application state minimizes the number
of dependencies between SDN switches and a specific state parti-
tion. We say a switch depends on a state partition if handling the
events from the switch or invoking control actions on that switch
requires accessing/updating application state contained in the parti-
tion. Applications can tag state objects with identifiers for pertinent
switches so we can determine such dependencies; in the future, we
plan to explore how we can leverage program analysis techniques to
automatically infer such dependencies from an application’s code.

Given this definition, we can define the partitioning problem in
terms of a bipartite graph. A set of switches and a set of state
partitions (determined based on a particular partitioning strategy)
form the vertices. Edges between switches and partitions indicate
a dependency, and the weight of the edge represents the amount
of state that must be transferred between controller instances if the
switch is assigned to a different instance than the state partition.
The optimality of the partitioning is determined by the degree of
the state partition vertices; ideally, we want all partition vertices
to have degree one. If a given state partition has a degree greater
than one and we could reasonably divide the partition into smaller
pieces (e.g., the partition is currently a set of objects which could
be broken into smaller sets), then the partition should be further
divided and the bipartite graph updated.

There are ample applications where this ideal partitioning can be
found. For example, an intrusion detection application that detects
DoS attacks and port scans for hosts under the switches it controls

Figure 4: Application state for multi-tenant virtualized data
center application

can group hosts, and the state associated with them, based on the
switch to which the hosts are connected (Figure 2). We could in-
stead partition state at the granularity of individual hosts, but this
complicates the assignment problem and offers little benefit. As an-
other example, the state for a traffic engineering application [14],
which pre-computes routes and path weights between every source-
destination pair, can be partitioned on the basis of the source switch
(Figure 3).

However, there are applications—e.g., multi-tenant virtualized
data center, middlebox orchestrator for clouds [7], and load balanc-
ing [15]—for which an ideal partitioning is not possible. This is
due to the fact that some state for these applications is inherently
associated with multiple switches: e.g., state for a tunnel between
two switches may be accessed or updated when processing events
from either switch (Figure 4).
Pooling. To reduce the number of dependencies between switches
and state partitions, we can organize network switches and logi-
cally entities (e.g., tenants) into pools. For example, in a multi-
tenant virtualized data center, the data center can be organized such
that tenants are grouped into pools (say 20 tenants form a pool;
the actual number may be decided by operators), and VMs of ten-
ants are co-located only with VMs of other tenants belonging to
the same pool. In other words, only tenants from the same pool
share a hypervisor. Thus, the virtual switches in a pool’s hypervi-
sors will only depend on a single state partition that encompasses
all application state for tenants in the pool. Such pooling and par-
titioning will give favorable options to the assignment algorithm
to drastically minimize the inter-controller communication, assum-
ing the pool’s state partition and switches are placed on the same
controller. Additionally, choosing smaller pool sizes will help in
better packing efficiency in controllers. We acknowledge the fact
that there is a trade-off between achieving better performance (by
varying pool sizes) and the ability to place VMs anywhere, but this
trade-off could be worthwhile.

3.2 Controller assignment problem
After partitioning, we need to figure out a way to optimally

assign switches and application state partitions to controller in-
stances. We want the assignment to minimize both the number
of machines used and the amount of inter-controller communica-
tion. The former helps reduce costs for operating the controller in-
stances, and the latter helps meet the latency requirements of SDN
applications.

The controller assignment problem is a variant of the multi-
dimensional bin packing problem. We model this problem as an
integer linear program (Section 3.2.1) and we provide a heuristic
approach to solve it (Section 3.2.2).

3.2.1 ILP formulation
We formulate the controller assignment problem as an integer

linear program (ILP). The objective is to find an assignment that
minimizes the weighted sum of the cost of controller machines uti-
lized and the cost of inter-controller communications.
Inputs. Let P be the set of state partitions, and pi be the memory
requirement of the partition i. Let S be the set of switches, and si
be the compute requirement of switch i. Let dij be the volume of
state that must be transferred between controllers if switch i and
state partition j are assigned to different controllers. Finally, let B
be the set of machines (or bins) available for running controllers,
wi be the cost of machine i, and ci and mi be the compute and
memory resources available at machine i.
Variables. The binary variables xik and yjk are used to capture the
controller assignment. They indicate whether switch i is mapped
to resource k and whether partition j is mapped to resource k re-
spectively. The binary variable zi indicates whether the resource i
is used as a controller instance, i.e., whether at least one switch or
partition is assigned to resource i. The binary variable tij indicates
whether switch i and partition j are assigned to different resources.
ILP Formulation.

minimize

α
∑
i∈B

ziwi + β
∑
i∈S
j∈P

dijtij (1)

subject to ∑
i∈S

xijsi ≤ cj ∀j ∈ B (2)

∑
i∈P

yijpi ≤ mj ∀j ∈ B (3)

∑
j∈B

xij = 1 ∀i ∈ S (4)

∑
j∈B

yij = 1 ∀i ∈ P (5)

∑
i∈S

xik +
∑
j∈P

yjk ≤Mzk ∀k ∈ B (6)

tij ≥ 1−
∑
k∈B

t′ijk ∀i ∈ S, j ∈ P (7)

t′ijk ≤ xik ∀i ∈ S, j ∈ P, k ∈ B (8)

t′ijk ≤ yjk ∀i ∈ S, j ∈ P, k ∈ B (9)
xij ∈ {0, 1} ∀i ∈ S, j ∈ B (10)
yij ∈ {0, 1} ∀i ∈ P, j ∈ B (11)
tij ∈ {0, 1} ∀i ∈ S, j ∈ P (12)

t′ijk ∈ {0, 1} ∀i ∈ S, j ∈ P, k ∈ B (13)
zi ∈ {0, 1} ∀i ∈ B (14)

Objective. The first term (
∑

i∈B ziwi) in the objective func-
tion (eq. 1) captures the cost of resources used; the second term
(
∑

i∈S
j∈P

dijtij) captures the communication cost between con-

trollers when dependent switches and partitions are assigned to dif-
ferent resources. The weights α and β in the objective function

help the network operator specify the relative importance of reduc-
ing resource costs and reducing inter-controller communication.
Constraints. Eq. 2 and eq. 3 specify the compute and memory
limits of resources. Eq. 4 and eq. 5 makes sure all switches and
partitions are assigned exactly one controller resource. Eq. 6, with
M ≥ |S| + |P |, helps in setting the variable zk to 1 when at least
one switch or partition is assigned to resource k. Eq. 7 to eq. 9
help in setting variable tij to 1 when switch i and partition j are
placed on different controller resources; t′ijk will be set to 1 when
both switch i and partition j are assigned to the same controller
resource k. Lastly, eq. 10 to eq. 14 indicates xij , yij , tij , t′ijk and
zk are binary variables.

3.2.2 Heuristic approach
Accurately solving the ILP for a large topology (e.g., O(104)

switches, O(102) controller machines) is not scalable. Hence, we
model the ILP as a search problem. We use a local search algo-
rithm (hill climbing with simulated annealing) to find the optimal
assignment within a given time limit (e.g., 30 seconds). The time
limit allows us to trade-off efficiency vs. reactivity: more search
time allows us to find a more optimal assignment, leading to better
efficiency, but high load in the meantime can impact flow setup la-
tencies. The assignment found using a first-fit decreasing heuristic
is set as the initial state during the hill climbing search algorithm.

3.3 Controller reassignment problem
The techniques in the previous sub-section help in assigning state

partitions and switches to controller resources. However, during the
operation of the network, the resource requirements of switches and
state partitions can dynamically change. We need to adapt to such
dynamic changes in resource requirements by reassigning some
switches and partitions to existing or new controller resources.
However, reassigning all switches and partitions is infeasible, be-
cause migrating state partitions, and reconfiguring switches to talk
to the new controller instance, are expensive processes. Thus, the
goal of reassignment should be to minimize the number of reas-
signments while at the same time utilizing minimal resources and
minimizing inter-controller communication.

We can model this reassignment problem as an integer linear pro-
gram (ILP), where the program takes as input the cost of reassign-
ment of switches and state partitions, and minimizes the weighted
sum of the cost of controller resources, the cost of inter-controller
communications, and the cost of reassignment of switches and par-
titions. We can use a heuristic approach similar to the one in Sec-
tion 3.2.2 to compute the reassignments efficiently. We plan to
model and solve this problem as part of our future work.

3.4 Elastic Scaling
Initially, the application state is partitioned at the finest possi-

ble granularity (Section 3.1) and state partitions and switches are
assigned to controller instances as per the assignment algorithm
(Section 3.2). The controller instances are launched in the ma-
chines selected by the assignment algorithm. Each controller in-
stance reports the flow-arrival rate from switches and the memory
usage of state partitions it hosts. When one or more controllers
are overloaded, we invoke the controller reassignment algorithm
(Section 3.3) to find a new controller assignment for state parti-
tions and switches. As per the new assignments, new controller
instances are launched (in new machines) or unneeded controller
instances are removed. The application state partitions are also mi-
grated between controller machines. The switch migration protocol
in ElastiCon [6] can be leveraged to migrate switches; migration

Figure 5: Assignment of multiple applications with co-
ordination

only takes ≈20ms, during which flow setup latency increases by
<1ms, so performance is not impacted much.

3.5 Multiple applications
There can be multiple SDN applications deployed in the same

control plane (traffic engineering, multi-tenant virtualized data cen-
ter, firewall, traffic accounting, etc.) and each application might
have a different dependency graph (Section 3.1). We propose a gen-
eralized solution for the following two situations: (i) applications
require coordination—e.g., a new flow needs to be processed by
application 1 (firewall) followed by application 2 (routing); and (ii)
applications operate independently without any conflicts— e.g., ap-
plication 1 (routing) and an off-path application 2 (traffic account-
ing).

For (i), we run the controller assignment algorithm considering
the memory requirements of all applications together. The orches-
tration layer in the controller sends network events (e.g., packet-
in) to applications in the order specified by network policies. For
instance, as shown in Figure 5, the controller sends a packet-in
event to the firewall application (1) and, if the packet should not
be blocked, subsequently sends the event to the routing application
(2). The application partitions for firewall and routing might reside
in different controller instances, so there may be RPC calls involved
in such scenarios.

For (ii), we run the controller assignment algorithm separately
for each application and dedicate individual controller instances for
each application. A switch is connected to one controller (host-
ing partitions of one application) in a master role and connected
to other controllers (each controller hosts application partitions of
other applications) in an equal role. The packet-in events are sent
in parallel to master and equal controllers and the partitions of dif-
ferent applications residing in controllers can act on the events in
parallel without any coordination. This scenario can be seen in the
example in Figure 6, where packet-in events from Switch1 are sent
in parallel to Controller 1 hosting a routing application (1) and to
Controller 1’ hosting a traffic accounting application (1’).

4. EVALUATION
We evaluate Pratyaastha from two perspectives: (1) minimizing

inter-controller communication to limit the number of flows with
high setup latency; and (2) minimizing controller operating costs
through efficient resource allocation.

We built a simulator written in Java to compare the performance
and efficiency of Pratyaastha with other controller-assignment ap-
proaches. We implemented the controller assignment algorithm us-
ing the Optaplanner [3] planning engine. We used the 34 ToR topol-

Figure 6: Assignment of multiple independent applications
with no co-ordination

ogy and traffic characteristics of a private data center from Benson
et al. [4]. For controller machines, we used the resource config-
urations (m1.small, m1.xlarge, m3.medium, m3.large, m3.xlarge,
m3.2xlarge) and costs from Amazon EC2 instances [1].

We initially partitioned the network topology into 11 pools, with
3 switches per pool (except the last pool, which has 4 switches); this
is representative of the pooling that we advocate applying in the
context of a multi-tenant virtualized data center application (Sec-
tion 3.1). We randomly chose how much static data is contained
in the state partition associated with each pool; this represents the
memory consumed by application state like tunnel data and pre-
computed routes, which do not change with the number of flows.
Each switch generates traffic according to the flow inter-arrival time
CDF reported in Benson et al. [4]. The dynamic memory used by
a state partition is set in proportion to the flow-arrival rate at the
switches in the associated pool; this represents the memory con-
sumed by applications which store flow-level data, e.g., an intru-
sion detection application.

4.1 Performance
We used a value of 1 for α and β in the objective function in

the assignment algorithm (Section 3.2). Pratyaastha’s assignment
algorithm (Section 3.2) and pooling technique (Section 3.1) helped
in assigning almost 80% of related switches and state partitions
to the same controller instance. This avoids costly RPC calls be-
tween controllers when handling events from 80% of the switches,
thereby ensuring suitable flow setup latency for the flows at these
switches. Furthermore, the assignment algorithm ensures that the
processing responsibilities of a controller instance is within its CPU
capacity, thereby avoiding overload. We note that by varying val-
ues for α and β, we can make efficiency vs. performance trade-offs.
We omit details for brevity.

4.2 Resource utilization
We compare the resource utilization of Pratyaastha against two

other designs: (1) CPU only, a system which only considers the
flow-arrival rate at switches when determining a controller assign-
ment, and which stores all state in a distributed data store; (2) Local
CPU + Mem, a system which considers both the flow-arrival rate at
switches and the dynamic memory usage of applications (for flow-
level data), and which stores only static application data (e.g., ten-
ant tunnel data) in a distributed data store. The CDFs of resource
utilization of the three controller-assignment approaches are shown
in Figure 7. Overall with Pratyaastha we get a 33% and a 42% de-
crease in cost when compared with Local CPU + Mem and CPU
only, respectively. In the experiments, we allocated dedicated ma-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
D

F

Cost (cents/hour)

CPU only
Local CPU + Mem

Pratyaastha

Figure 7: CDFs of resource utilization of CPU only, Local CPU
+ Mem, and Pratyaastha for a private data center topology with
simulated flow arrival rates.

chines for the distributed data store, which are separate from the
machines for controller instances. We could spread the distributed
data store among the controller instances for (1) and (2), but both
still suffer from latency overhead because of inter-controller com-
munications and remote accesses to the distributed data store.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have shown that current state of the art dis-

tributed controller architectures are not sufficient to provide low
flow setup latencies, and they incur more than optimal operat-
ing costs. We presented Pratyaastha, an efficient and elastic dis-
tributed SDN control plane that jointly minimizes inter-controller
communication and resource consumption to address the above is-
sues while allowing operators to make performance vs. cost trade-
offs. Our initial evaluation results are very promising, and we plan
to build a full fledged system with fault tolerance and controller
reassignment capabilities.

6. ACKNOWLEDGMENTS
We thank Aditya Akella, Junaid Khalid, Paul Suganthan G.C.,

and the anonymous reviewers for their valuable feedback. This
work is supported in part by a Wisconsin Alumni Research Founda-
tion (WARF) Accelerator Award and National Science Foundation
grants CNS-1302041, CNS-1314363 and CNS-1040757. Aaron
Gember-Jacobson is supported by an IBM PhD Fellowship.

7. REFERENCES
[1] EC2 pricing.

http://aws.amazon.com/ec2/pricing.

[2] HP Network Protector SDN Application.
http://h17007.www1.hp.com/us/en/
networking/products/network-management/
Network_Protector_SDN_Application_Series.

[3] OptaPlanner. http://optaplanner.org.
[4] Theophilus Benson, Aditya Akella, and David A. Maltz.

Network traffic characteristics of data centers in the wild. In
IMC, 2010.

[5] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying
Luo, Nick McKeown, and Scott Shenker. Ethane: Taking
control of the enterprise. In SIGCOMM, 2007.

[6] Advait Abhay Dixit, Fang Hao, Sarit Mukherjee, T. V.
Lakshman, and Ramana Rao Kompella. Towards an elastic
distributed SDN controller. In HotSDN, 2013.

[7] Aaron Gember, Anand Krishnamurthy, Saul St. John, Robert
Grandl, Xiaoyang Gao, Ashok Anand, Theophilus Benson,
Aditya Akella, and Vyas Sekar. Stratos: A network-aware
orchestration layer for middleboxes in the cloud. Technical
Report arXiv:1305.0209, 2013.

[8] Soheil Hassas Yeganeh and Yashar Ganjali. Kandoo: A
framework for efficient and scalable offloading of control
applications. In HotSDN, 2012.

[9] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy
Stribling, Leon Poutievski, Min Zhu, Rajiv Ramanathan,
Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, and Scott
Shenker. Onix: A distributed control platform for large-scale
production networks. In OSDI, 2010.

[10] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru
Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker,
and Jonathan Turner. OpenFlow: Enabling innovation in
campus networks. SIGCOMM Comput. Commun. Rev.,
38(2):69–74, March 2008.

[11] Matthew Monaco, Oliver Michel, and Eric Keller. Applying
operating system principles to SDN controller design. In
HotNets, 2013.

[12] Stefan Schmid and Jukka Suomela. Exploiting locality in
distributed sdn control. In HotSDN, 2013.

[13] Amin Tootoonchian and Yashar Ganjali. HyperFlow: A
distributed control plane for OpenFlow. In INM/WREN,
2010.

[14] Ramona Trestian, Gabriel-Miro Muntean, and Kostas
Katrinis. MiceTrap: Scalable traffic engineering of
datacenter mice flows using OpenFlow. In IFIP/IEEE IM,
2013.

[15] Richard Wang, Dana Butnariu, and Jennifer Rexford.
OpenFlow-based server load balancing gone wild. In
Hot-ICE, 2011.

