Auto-completion for Network Configurations

Ahsan Mahmood! Aaron Gember-Jacobson
Colgate University
{ amahmood, agemberjacobson}@colgate. edu

1 Introduction

Most networks rely on distributed routing protocols to
determine how traffic flows through the network. This
requires configuring each device to run the appropriate
protocols, communicate with other devices, and select
the desired paths. The configurations are often complex,
consisting of thousands of lines of low-level directives
and dozens of symbolic references [2]. Consequently,
configuration errors are common and the leading cause
of network outages [5].

The prevalence of configuration errors stems from the
rudimentary manner in which devices are typically con-
figured. Most network devices feature a command line
interface (CLI) for adding and removing individual lines
of configuration. The only configuration assistance the
CLI provides is tab-completion of keywords; this has
limited value because keywords are listed alphabetically
and the operator still has to search for the desired com-
pletion. To simplify common configuration tasks, many
network management tools support the use of configu-
ration templates: snippets of configuration that can be
customized and inserted into the configurations of one or
more devices [2]. However, these tools do not assist the
operator in writing the templates or selecting the appro-
priate template(s) to use in a given configuration. More
recently, network operators have begun to configure de-
vices using higher-level, vendor-independent languages
which are automatically compiled to the low-level device
configurations [1]. But, these higher-level specifications
can still contain dozens of symbolic references and be
hundreds of lines long.

We thus propose a different approach that can serve to
complement existing techniques for writing routing con-
figurations by considering the problem of writing net-
work configurations to be analogous to writing software
code. Most configurations are written using vendor spe-
cific languages, that make use of rules and keywords sim-
ilar to traditional programming languages. We envision
an interactive system inspired by code completion en-
gines [6, 4] that could be invoked by network operators
as they write router configurations to offer them sugges-
tions for what to put in next, or list the options available
from the invocation point. Our long term goal is to ex-
pand this engine into a fully featured assistant for writing

*Undergraduate student

Tokens and Statements Shared by Devices

Shared Ratio

mmmmmmmmm

Anonymized Devices from University A

Figure 1: Token and statement similarity for Univ-A

network configurations, one which can infer the type of
router an operator is trying to configure and suggest rel-
evant statements or even stanzas.

Recent research on software systems has shown that
codebases tend to contain regularities, much like natural
languages [3]. This has motivated further research on us-
ing traditional Natural Language Processing techniques
for code completion and token suggestion, resulting in
fairly accurate models [3, 6]. We hypothesize a similar
regularity for network configurations, especially since
they tend to be homogeneous by design, reusing the
same set of keywords/tokens. Our preliminary results
show that using an off-the-shelf NLP algorithm with
minor modifications, can give us accuracies as high as
95% for some configurations.

2 Configuration Similarity

Previous measurement students have found extensive
use of templates in configurations from actual networks.
Thus, we expect a network’s configurations to share a
common set of tokens and statements. To confirm this
hypothesis, we split the configurations of a large univer-
sity network (University A in Table 1) into tokens—each
keyword and identifiers (e.g., interface names, VLAN
numbers, IP prefixes, etc.) is considered a token. For
each device, we measured the fraction of tokens and
statements (i.e., lines of configuration) that existed in at
least one other device’s configuration.

As shown in Figure 1, almost all configurations were
composed of the same set of unique tokens. The tokens
that are not shared between configurations are primarily

Univ. | No. of Configs | Total Lines | Avg Lines
A 35 73K 2.1K
B 26 61K 2.3K
C 24 67K 2.8K

Table 1: Configurations used in our evaluation

1.00

e
o
&

o
©
S

e
@
&

0.80

an T =
S

Prediction Accuracy

—= Mean
0.65 Median
* Outlier

A B c
University Name

Figure 2: Prediction accuracy per-router per-network

IP prefixes. Moreover a large fraction of statements ap-
peared in another device’s configuration. These observa-
tions indicate that most of a device’s configuration could
be constructed from existing configurations.

3 NLP-based Configuration Completion

We leverage the regularity of configurations to design
an intelligent configuration completion engine. Accord-
ing to Hindle et al. [3], regularities in texts can be eas-
ily exploited by natural language processing (NLP) tech-
niques. Hence, we use n-grams, ranked based on likeli-
hood, to complete the next token(s) in a configuration.
Prior to building the model, we employ a networking-
specific optimization inspired by our observation that IP
prefixes are often unique to devices (Section 2): we re-
place prefixes with generic PREFIX tokens. As we show
below, this allows us to accurately predicate the next to-
ken in configuration statements involving prefixes.
Preliminary Results. We applied our framework to
Cisco configurations of core, border, and distribution
routers from three large university networks (Table 1).
To test the accuracy of our model, we perform leave-one-
out cross validation: one (set of) configuration(s) is used
for testing and the remainder are used for training. We
“rebuild” the test configuration(s) token-by-token by us-
ing our n-gram model to predict the next token based on
the prior n-1 tokens; we do not predict across lines. A
prediction is marked as successful when the actual next
token in the configuration is within the top three results
generated by the model.

Figure 2, shows the prediction accuracy for the routers in
each network. Our approach achieves a high prediction
accuracy (>85%) for the majority of routers. Without
our placeholders optimization, this accuracy is 5% lower.
We also analyzed the effects of training on more config-

0.830

MELLLELEL

0.815

Prediction Accuracy

*
0.810

0.805

. * Outlier

6 12 18 24 30 36 42 48
Sample Size

Figure 3: Impact of number of months for Univ-A

Prediction Accuracy
o o
5> ®
g &

—= Mean
Median
+ Outlier

10 15 20 25
Number of Device Configurations

Figure 4: Impact of number of devices for Univ-A

urations in time and space. As shown in Figure 3, our
framework does not require a long history of configura-
tions to achieve reasonable accuracy. In contrast, training
on more devices results in higher accuracies (Figure 4).
However, training on more devices has diminishing re-
turns, because additional devices play the same role as
existing devices, and hence are very similar.

4 Future Work

Our analyses help direct our attention towards areas of
improvements for the model. The variance seen in our
device analysis suggests that having different models for
router of different roles” could help improve prediction
accuracies. Additionally, we plan on exploring the possi-
bility of using larger n-grams to suggest complete state-
ments. Lastly, we hope to evaluate our model against the
current state of the art: tab-completion in CLIs on mod-
ern routers.

References

[1] KEES: the coloclue network automation toolchain. https://
github.com/coloclue/kees.

[2] T. Benson, A. Akella, and D. Maltz. Unraveling the complexity of
network management. In NSDI, 2009.

[3] A. Hindle, E. T. Barr, M. Gabel, Z. Su, and P. T. Devanbu. On the
naturalness of software. Commun. ACM, 59(5):122-131, 2016.

[4] JetBrains. Intellij autocompletion documentation. https://goo.
gl/1MrE8o.

[5] Juniper Networks. What’s behind network downtime? https:
//www-935.ibm.com/services/au/gts/pdf/200249.pdf.

[6] V. Raychev, M. Vecheyv, and E. Yahav. Code completion with sta-
tistical language models. In PLDI, 2014.

