Localizing Router Configuration Errors Using Unsatisfiable Cores Ruchit Shrestha, Xiaolin Sun, and Aaron Gember-Jacobson (Colgate University)

Motivation

Networks relying on distributed routing protocols often have complex router configurations. This complexity makes it difficult for operators to update configurations and locate errors in configurations.

Policy*	Satisfied	Counterexample
S1⇒D1	Х	R3→Blocked
S1⇒D2	Х	$R3 \rightarrow R2 \rightarrow D2$
S2⇒D1	Х	R1→R3→Blocked
S2⇒D2	Х	$R1 \rightarrow R3 \rightarrow R2 \rightarrow D2$

*should hold even under single link failure

Current verification/repair tools

State-of-the-art network verifiers [1, 3, 5] do not indicate:

- which portions of the configurations influenced the computation of the forwarding path
- whether routers on the path, off the path, or both are at fault
- whether violations of the same requirement may manifest in different ways under different failure scenarios
- whether violations of different requirements are related

State-of-the-art network repair tools [2, 4] do not scale to networks with many routers or policies, because they consider all possible repairs.

Fault localization

Software fault localization is the process of identifying which lines of a program likely cause certain test cases to fail. Our goal is to design a technique for accurately localizing errors in network configurations, thus paving the way for faster network repair.

Multiple, minimal unsatisfiable cores

Challenges:

- Unsat core may not be minimal \Rightarrow core includes constraints that do not contribute to correct behavior \Rightarrow under estimate faults
- Solver produces one, out of many, unsat cores \Rightarrow overlook constraints that contribute to good behavior \Rightarrow over estimate faults

Solution:

- Compute *all* minimal unsat cores using MARCO [6]
- Faults = N union of all minimal unsat cores

identify faults in individual lines of configuration, rather than stanzas

References & Acknowledgements

R. Beckett, A. Gupta, R. Mahajan, D. Walker. A general approach to network configuration verification. SIGCOMM, 2017. 2. A. El-Hassany, P. Tsankov, L. Vanbever, M. Vechev. Netcomplete: Practical network-wide configuration synthesis with autocompletion. NSDI, 2018.

3. S. K. Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. D. Millstein, V. Sekar, G. Varghese. Efficient network reachability analysis using a succinct control plane representation. OSDI, 2016.

4. A. Gember-Jacobson, A. Akella, R. Mahajan, and H. Liu. Automatically repairing network control planes using an abstract representation. SOSP, 2017.

5. A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan. Fast control plane analysis using an abstract representation. SIGCOMM, 2016.

6. M. H. Liffiton, A. Previti, A. Malik, and J. Marques-Silva. Fast, flexible MUS enumeration. Constraints, 21(2), 2016.

This work is funded by National Science Foundation Grant CCF-1637427 and Colgate University.