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ABSTRACT
A number of data-intensive systems require using random hash-
based indexes of various forms, e.g., hash tables, Bloom filters,
and locality sensitive hash tables. In this paper, we present gen-
eral SSD optimization techniques that can be used to design a vari-
ety of such indexes while ensuring higher performance and easier
tunability than specialized state-of-the-art approaches. We lever-
age two key SSD innovations: a) rearranging the data layout on
the SSD to combine multiple read requests into one page read, and
b) intelligently reordering requests to exploit inherent parallelism
in the architecture of SSDs. We build three different indexes using
these techniques, and we conduct extensive studies showing their
superior performance, lower CPU/memory footprint, and tunabil-
ity compared to state-of-the-art systems.

Categories and Subject Descriptors
C.2.m [Computer Communication Networks]: Miscellaneous;
D.4.2 [Operating Systems]: Storage Management; E.2 [Data]: Data
Storage Representations

Keywords
Solid state drives (SSDs), hashtables, bloom filters, memory effi-
ciency, CPU efficiency, parallelism

1. INTRODUCTION
Data-intensive systems are being employed in a wide variety of

application scenarios today. For example, key-value systems are
employed in cloud-based applications as diverse as e-commerce
and business analytics systems, and picture stores; and large ob-
ject stores are used in a variety of content-based systems such as
network deduplication, storage deduplication, logging systems, and
content similarity detection engines. To ensure high application
performance these systems often rely on random hash-based in-
dexes whose specific design may depend on the system in question.
For instance, WAN optimizers [5, 6], Web caches [4, 7], and video
caches [2] employ large streaming hash tables. De-duplication sys-
tems [28, 30] employ Bloom filters. Content similarity engines and
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some video proxies [2, 11] employ locality sensitive hash (LSH)
tables [24]. Given the volume of the underlying data, the indexes
often span several 10s to 100s of GB, and they continue to grow in
size.

Across these systems, the index is the most intricate in design.
Heavy engineering is often devoted to ensure high index perfor-
mance at low cost and low energy footprint. Most state-of-the-
art systems [14, 15, 21, 25] advocate using SSDs to store the in-
dexes, given flash-based media’s superior density, 8X lower cost
(vs. DRAM), 25X better energy efficiency (vs. DRAM or disk), and
high random read performance (vs. disk) [25]. However, the com-
monality ends here. The conventional wisdom, which universally
dictates index design, is that domain- and operations-specific SSD
optimizations are necessary to meet appropriate cost-performance
trade-offs. This poses two problems: (1) Poor flexibility: Index de-
signs often target a specific point in the cost-performance spectrum,
severely limiting the range of applications that can use them. It
also makes indexes difficult to tune, e.g., use extra memory for im-
proved performance. Finally, the indexes are designed to work best
under specific workloads; minor deviations can make performance
quite variable. (2) Poor generality: The design patterns employed
apply only to the specific data structure on hand. In particular, it is
difficult to employ different indexes in tandem (e.g., hash tables for
cache lookup alongside LSH tables for content similarity detection
over the same underlying content) as they may employ conflicting
techniques that result in poor SSD I/O performance.

Our paper questions the conventional wisdom. We present differ-
ent indexes that all leverage a common set of novel SSD optimiza-
tions, are easy to tune to achieve optimal performance under a given
cost constraint, and support widely-varying workload patterns and
applications with differing resource requirements; yet, they offer
better IOPS, cost less, and consume lower energy than their coun-
terparts with specialized designs.

We rely on two key innovations. (1) We leverage a unique fea-
ture of SSDs that has been overlooked by earlier proposals, namely,
that the internal architecture of SSDs offers parallelism at multi-
ple levels, e.g., channel-, package-, die-, and plane-level. Critically,
the parallelism benefits are significant only under certain I/O work-
loads. Our key contribution lies in identifying these parallelism-
friendly workloads and developing a set of design patterns for en-
capsulating the input workload for an index into SSD parallelism-
friendly forms. (2) Based on the design patterns, we develop a new
primitive called slicing which helps organize data on the SSD such
that related entries are co-located. This allows us to combine mul-
tiple reads into a single “slice read” of related items, offering high
read performance. We show how our design patterns inform slice
size, the number of slices to co-locate at a particular SSD block,
and the techniques to use for reading from and writing to slices. A



key feature of slicing is that slice size/composition (i.e., how many
elements constitute a slice) offers simple knobs to trade off I/O per-
formance for the memory overhead of any index data structure.

In §4, we conduct several experiments to profile the internal par-
allelism behavior on a desktop-grade SSD to identify parallelism-
friendly I/O patterns, and derive the appropriate design patterns that
guide the composition, configuration and use of slices. Then, we
present the design of three random-hash based indexes that lever-
age our design patterns and slicing: a streaming hash table called
SliceHash (§5), large Bloom filters called SliceBloom, and locality-
sensitive hash tables called SliceLSH (§6).

Our index designs can be sketched as follows: We use small in-
memory data structures (hash tables, Bloom filters, or LSH tables,
as the case may be) as buffers for insert operations to deal with the
well-known problem of slow random writes on SSDs. When full,
these are flushed to the SSD; each of these flushed data structures
is called an “incarnation”. A similar approach has also been used
in state-of-the-art techniques, e.g., [14, 25], to deal with slow ran-
dom writes. However, they need to maintain complex metadata for
lookups, which imposes high memory overhead or CPU cost. In
contrast, we use a simple reorganization of data on the SSD such
that all related entries of different incarnations are located together
in a slice, thereby optimizing lookup and eliminating the need for
maintaining complex metadata. We show that this frees memory
and compute resources for use by higher layer applications. Further,
based on an understanding of the SSD’s writing policy, we appro-
priately reorder lookups, without violating application semantics,
to distribute them uniformly across different channels and extract
maximal parallelism benefits.

Our parallelism-centered design patterns and the slicing primi-
tive together offer good performance at relatively low CPU or mem-
ory overhead in comparison to state-of-the art techniques. We show
that our design techniques facilitate extending the indexes to use
multiple SSDs on the same machine, offering linear scaling in per-
formance while also lowering per-key memory overhead. State-of-
the-art techniques cannot be scaled out in a similar fashion.

We build prototype indexes using a 128GB Crucial SSD and
at most 4GB of DRAM. We conduct extensive experiments un-
der a range of realistic workloads to show that our design pat-
terns offer high performance, flexibility, and generality. Key find-
ings from our evaluation are as follows: On a single SSD, SliceHash
can provide 69K lookups/sec by intelligently exploiting parallelism
which is 1.5X better than naively running multiple lookups in par-
allel. Lookup performance is preserved even with arbitrarily inter-
leaved inserts, whereas state-of-the-art systems take up to a 30%
performance hit. SliceHash has low memory footprint and low CPU
overhead, yet it provides high lookup performance. Furthermore,
SliceHash can be tuned to use progressively more memory (from
0.27B/entry to 1.1B/entry) to scale performance (from 70K to 110K
ops/s) for mixed (50% lookup, 50% insert) workloads. When lever-
aging 3 SSDs in parallel, SliceHash’s throughput improves to be-
tween 207K (lookup-only) and 279K (lookup/insert) ops/sec. Slice-
Bloom performs 15K ops/sec with a mixed lookup/insert workload,
whereas the state-of-the-art [22] achieves similar performance on a
high-end SSD that costs 30X. SliceLSH performs 6.9K lookups/s.

2. DESIGN REQUIREMENTS
AND EXISTING SYSTEMS

Our goal is to develop generic SSD design optimizations that
can be applied nearly universally to a variety of random hash-based
indexes that each have the following requirements:

Large scale: A number of data-intensive systems require large in-
dexes. For example, WAN optimizer [5, 6] indexes are ≥32GB;
data de-duplication indexes are ≥40 GB [3]. In keeping with the
trend of growing data volumes, we target indexes that are an order-
of-magnitude larger, i.e., a few hundred GB.
High performance and low cost: The index should provide high
throughput, low per-operation latency, and low overall cost, mem-
ory, and energy footprint. To apply to a wide-variety of content-
based systems, the index should provide good performance under
both inserts/updates and reads. State-of-the art techniques for hash
tables offer 46K IOPS [14, 25]; those for bloom filters offer 12-15K
IOPS [22]. Our indexes should match or exceed this performance.
Flexibility: This covers various aspects of how easy the index is to
use, as we discuss below.

Applications leveraging a given index may require significant
CPU and memory resources for their internal operations. For ex-
ample, data de-duplication applications require CPU resources for
computing SHA-1 hashes of fingerprints [12]. Various image and
video search applications require CPU resources for computing
similarity metrics after they find potential matches. Caching appli-
cations may want to use memory for caching frequently accessed
content. To ensure that the applications can flexibly use CPU and
memory and that their performance does not suffer, the index should
impose low CPU and memory overhead. Unfortunately, many prior
index designs ignore the high CPU overhead they impose in their
singular quest for, e.g., low memory footprint, and high read per-
formance (e.g., SILT [25]), which makes application design tricky.
Equally importantly, application designers should be able to easily
extend the index with evolving application requirements, e.g., add
memory or CPU cores at a modest additional cost to obtain com-
mensurately better performance. Finally, the index should work
well under a variety of workload patterns.

In the rest of this section, we survey other related hash-based
systems that employ flash storage. As stated earlier, none of these
studies use techniques that are all generally applicable across differ-
ent random hash-based indexes. Even ignoring this issue, all prior
designs fall short on one or more of the above requirements.

2.1 SSD-Based Hash Tables
We start by reviewing a specific class of indexes, namely those

based on hash tables. We review several prior systems each de-
signed for a specific application domain. We highlight the design
choices made in each case and the restrictions they impose.

Many recent works [14, 15, 20, 21, 25] have proposed SSD-
based indexes for large key-value stores. As Table 1 shows, each
design optimizes for a subset of metrics that matter in practice (i.e.,
high throughput, low latency, low memory footprint or low com-
putation overhead). Unfortunately, these optimizations come at the
expense of significantly impacting other metrics and they may im-
pact the applications that use the indexes, as we argue below.

FlashStore[20] stores key-value pairs in a log-structured fashion
on SSD storage, and uses an in-memory hash table to index them.
It optimizes for lookup (on average, one SSD read per lookup), but
imposes high memory overhead (∼6 bytes/key). SkimpyStash [21]
uses a low amount of memory—1 byte/key—to maintain a hash
table with linear chaining on the SSD. However, it requires 5 page
reads/lookup on average.

BufferHash [14] buffers all insertions in memory, and writes them
in a batch to the SSD. It maintains in-memory Bloom filters [8] to
avoid spurious lookups to any batch on the SSD. BufferHash re-
quires ∼1 page read per lookup on average and works well across
a range of workloads. However, it may need to read multiple pages
in the worst case due to false positives of the Bloom filters. Buffer-



FlashStore SkimpyStash BufferHash SILT
Avg Lookup ∼1 ∼5 ∼1 ∼1
(#page read)
Worst Lookup 1 10 16 33
(#page read)
Memory ∼6 ∼1 ∼4 ∼0.7
(# bytes/entry)
CPU overhead Low Low Low High

Table 1: Comparison of different SSD-based Hash tables under dif-
ferent metrics. The worst-case lookups are based on default pro-
totype configurations of these systems. Existing SSD-based Hash
tables are optimized for one set of metrics, but incur additional
overhead or perform poor under other metrics (shown in bold red).

Hash also has a high memory overhead (∼4 bytes/key) due to in-
memory Bloom filters. Finally, BufferHash is difficult to tune: it re-
quires a predetermined amount of memory (a function of SSD size)
to ensure that the false positive rate is low and worst-case lookup
cost is small.

SILT [25] offers a better balance across the different metrics than
any of the above systems. SILT achieves a low memory footprint
(0.7 bytes/entry) and requires a single page lookup on average.
However, SILT uses a much more complex design than the sys-
tems discussed above. It employs three data structures: one of them
is highly optimized for a low memory footprint, and the others
are more write-optimized but require more memory. SILT contin-
uously moves data from the write-optimized data structures to the
memory-efficient one. In doing so, SILT has to continuously sort
newly written data and merge it with old data. This increases the
computation overhead, which may impact the applications that use
SILT. Furthermore, these background operations affect the perfor-
mance of SILT under a workload of continuous inserts and lookups
as is common with, e.g., WAN optimizers. For example, the lookup
performance drops by 21% for a 50% lookup-50% insert work-
load on 64B key-value pairs. While SILT is somewhat tunable—
e.g., it is possible to tune the memory overhead between 0.7 and
2B per entry [25]—it doesn’t permit configurations with arbitrarily
low memory footprint contrary to our index designs.

Also, none of the above systems are designed for exploiting the
intrinsic parallelism of SSDs. As we show in §4, lookup perfor-
mance can improve by 5.2X if the underlying parallelism is opti-
mally exploited.

2.2 Other Indexes
Other hashing-based data structures have received less attention

than hash tables. But there has been growing interest in using SSDs
to support them when the scale is large, especially for Bloom filters.

Buffered Bloom Filter [17] is an approach for SSD-resident
Bloom filters that targets initial construction of Bloom filters to
ensure a low memory footprint. However, this data structure can-
not handle updates over time. BloomFlash [22] is an approach for
SSD-resident Bloom filters that optimizes for writes. BloomFlash
buffers bit updates in DRAM to avoid random writes to the SSD.
It also uses a hierarchical organization to manage writes. Neither
approach leverages parallelism intrinsic to SSDs. In particular, our
experiments show that by adapting BloomFlash’s design using our
parallelism-centered patterns and techniques, we can achieve the
same I/O performance using a commodity SSD that their design
achieves with a high-end SSD costing 30X more.

The critical takeaways from the above discussion are that the
individual designs are targeted to specific scenarios and workloads;
they are often not easy to tune, e.g., to trade-off performance for
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Figure 1: SSD internal architecture

memory; they are CPU intensive; and techniques used in one often
don’t extend to another.

Our goal is to develop guidelines to design indexes that offer high
I/O performance and low memory overhead, are easy to tune, work
well under a variety of workloads, and apply to a variety of indexes
based on random hashing, including hash tables, locality-sensitive
hash tables, and Bloom filters.

3. PARALLELISM IN SSD ARCHITECTURE
To meet our goal, we must first understand key properties of

SSDs that influence the design and performance of random hash-
based indexes. To this end, we describe the internal architecture of
SSDs. We then describe the different forms of parallelism available
within SSD architectures.

Figure 1 shows an illustration of a SATA-based SSD architec-
ture. SSDs provide logical block addresses (LBAs) as an interface
to the host. All I/O requests for LBAs are processed by an SSD
controller. The controller receives I/O requests from the host via an
interface connection (i.e., the SATA interface). The controller uses
the flash translation layer (FTL) to translate logical pages of incom-
ing requests to physical pages. It issues commands to flash pack-
ages via flash memory controllers. The flash memory controller
connects to flash packages via multiple channels (generally 2-10).

Each package has two or more dies or chips. Each die is com-
posed of two or more planes. On each plane, memory is organized
into blocks; each block consists of many pages. Each plane has
a data register to temporarily store the data page during reads or
writes. For a write command, the controller first transfers data to a
data register on a channel, and then the data is written from the data
register to the corresponding physical page. For a read command,
the data is first read from the physical page to the data register, and
then transferred to the controller on a channel.
Different Forms of Parallelism. The internal architecture of SSDs
incorporates varying degrees and levels of parallelism. Each of an
SSD’s channels can operate in parallel and independently of each
other. Thus, SSDs inherently have channel-level parallelism. Typi-
cally, the data transfers from/to the multiple packages on the same
channel get serialized. However, data transfers can be interleaved
with other operations (e.g., reading data from a page to the data
register) on other packages sharing the same channel [10, 29]. This



interleaving provides package-level parallelism. The FTL stripes
consecutive logical pages across a gang of different packages on
the same channel [10] to exploit package-level parallelism. Further-
more, the command issued to a die can be executed independently
of the others on the same package. This provides die-level paral-
lelism.

Multiple operations of the same type (read/write/erase) can hap-
pen simultaneously on different planes in the same die. Currently, a
two plane command is widely used for executing two operations of
the same type on two different planes simultaneously. This provides
plane-level parallelism. Furthermore, the data transfers to/from the
physical page can be pipelined for consecutive commands of the
same type.

4. PARALLELISM-FRIENDLY
DESIGN PATTERNS

At the heart of our work lies a generic set of techniques for care-
fully extracting the above intrinsic parallelism of SSDs to ensure
high performance without sacrificing generality and tunability. In
what follows, we first outline known properties of SSD I/O, and
techniques for accommodating them (§4.1). We then describe de-
sign patterns that help account for both the known properties as
well as the available forms of parallelism (§4.2).

4.1 Reads and Writes
The read/write properties of SSDs are well known. In particular,

a page is the smallest unit of read or write operations, meaning that
reading a 16B entry (such as a key-value pair in a hash table) is as
costly as reading an entire page. Also, the performance of random
page reads is comparable to that of sequential page reads. Thus, we
arrive at design pattern DP1: Organize data on the SSD in such a
way that multiple entries to be read reside on the same page.

SSDs show poor performance under a heavy random write work-
load [27]. Even the random read performance is affected in a mixed
workload of continuous reads and writes [14]. A common design
pattern, which we call DP2, used to accommodate this property is:
Leverage a small amount of memory to buffer writes and flush data
out to the SSD at a granularity lower bounded by the size of a block
(typically 128K); we adopt this in our design.

We now describe the benefits of, and techniques for, applying
these insights along with leveraging SSD parallelism.

4.2 Extracting Parallelism
Channel-level Parallelism. The throughput of page reads can be
significantly improved by leveraging channel-level parallelism.
However, a simple way of using multiple threads to issue requests
in parallel does not work in the general case: when a sudden skew in
input keys forces all requests to go to the same channel, naive par-
allel lookups will obviously not provide any benefits. To extract the
benefits of parallelism under a wide-range of workloads and work-
load variations, we need to ensure that the requests issued to the
SSD are spread uniformly across the channels. This becomes pos-
sible if we know the mapping between pages and channels. Armed
with this knowledge, we can then reorder lookup requests to en-
sure that those issued concurrently to the SSD are uniformly spread
across channels.

However, the mapping is often internal to SSDs and not exposed
by vendors. Recent work [18] has shown that this mapping can be
reverse engineered. As mentioned earlier, the FTL stripes a group
of consecutive logical pages across different packages on the same
channel. The authors in [18] discuss a technique to determine the
size of the group that gets contiguously allocated within a chan-
nel; they call this logical unit of data a chunk. They show how to

determine the chunk size and the number of channels. Using this,
they also show how to derive the two common mapping policies:
(1) write-order mapping, where the ith chunk write is assigned the
channel i % N, assuming N is the number of channels, and (2) LBA-
based mapping, where the logical block address (LBA) is mapped
to channel number LBA % N.

As an example, we employed the technique in [18] with a Cru-
cial SSD. We estimated the chunk size and number of channels
to be 8KB and 32, respectively. We further found that the Crucial
SSD follows write-order mapping. Figure 2a shows the lookup per-
formance of the our channel-aware technique that uses the above
estimates of the SSD channel count and mapping policies, for dif-
ferent numbers of threads (labeled “Best”). We also show the worst
case (labeled “Worst”), where we force requests to go to the same
channel. We find that the gap between the two is quite substantial—
nearly 5.2X. As a point of comparison, we also show the perfor-
mance of simply issuing multiple requests using multiple threads
without paying attention to channel-awareness (labeled “Rand”):
we see that this is up to 1.5X worse for this workload.

Thus, we arrive at the following design pattern DP3: when per-
forming lookups, rearrange them such that the requests are evenly
spread across channels.

We further investigate if issuing concurrent writes leads to simi-
lar benefits as concurrent reads; as stated above, each write should
be at least the block size (DP2). Figure 2b shows results for the Cru-
cial SSD. We see that parallelism offers marginal improvement at
best. The reason is that the Crucial SSD’s write-order-based map-
ping assigns consecutive chunks (8KB) to different channels, and
so, by default, any write larger than the chunk size is distributed
over multiple channels. Thus, we arrive at DP4: simply issuing
large bulk writes suffices - issuing writes concurrently is not es-
sential to improving write throughput.
Package-level parallelism: Figure 2c shows the random read per-
formance for different read sizes. We observe high read bandwidth
when large reads are issued. This is because reads up to the chunk
size (8KB) can exploit package-level parallelism. Reads larger than
the chunk size can exploit both channel-level and package-level
parallelism. Thus, we have DP5: when possible, it helps to issue
large reads.

Note that this design pattern cannot be used for regular lookups
into an index data structure, as issuing large reads may retrieve
useless data resulting in low system goodput. However, as we will
show later, this design pattern aids in instrumenting patterns 1–4.
Plane-level parallelism: Earlier works [18, 29] have shown that
intermingling small reads and small writes affects plane-level par-
allelism, leading to a performance drop of up to 1.3X in throughput
compared to issuing consecutive small reads followed by consecu-
tive small writes. However, the above design patterns already dic-
tate that we issue large writes (DP2) and small reads (small page
reads for lookup requests; DP1), which already ensure that small
reads and small writes are not intermingled by default. Thus, there
are no further undesirable interactions with plane-level parallelism.

5. STREAMING HASH TABLES:
SLICEHASH

In this section, we discuss how, using the design patterns (DP1–
5), we can develop techniques for building high-performance large
streaming hash tables where <key, value> pairs can be looked up,
inserted, updated and evicted over time. We call our index Slice-
Hash. We will describe how to build other index data structures in
§6.
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Figure 3: Basic SliceHash structure

Our key innovation, which applies across all the data structures,
is the use of a slicing primitive for storing multiple related entries
on the same page (DP1) thereby helping combine multiple index
lookups into one page read. We use known techniques for deal-
ing with random writes (DP2) but adapt them to work with slicing
(based on DP4 and DP5). Finally, we discuss how we implement
support for concurrent I/O in SliceHash (based on DP3). We show
how the design patterns influence key aspects of the configuration
of the data structure as well as the techniques we use to read from
and write to the SSD.

5.1 Basic SliceHash
Figure 3 shows the basic overview of SliceHash. SliceHash hi-

erarchically organizes the hash table across DRAM and SSD. We
maintain an in-memory hashtable, and inserts only happen in this
in-memory table. After the in-memory table is full, it is written as
an incarnation to the SSD in a batch. Over time, multiple incarna-
tions are written to the SSD. This aspect of the design is motivated
by DP2 for avoiding slow writes/updates to random SSD locations
during insertion of keys. BufferHash [14] also uses a similar design
principle, but SliceHash differs in how the data in the incarnations
is laid out on the SSD.

SliceHash uses the idea of slicing to lay out the data. Figure 3b
shows the physical layout of the data in incarnations in the form
of a slicetable. Before describing construction of the slicetable, we
define a few key terms:

• A slot is an index into the in-memory hash table or an on-
SSD incarnation, where an entry (i.e., a key-value pair) is or
can be stored.

• For a given slot, a slice is a list of all entries located at the
slot within all on-SSD incarnations. In Figure 3b, the slice for
slot-0, i.e., slice-0, contains entries from slot-0 from each in-
carnation, e.g., <K00,V00> from incarnation-0, <K10,V10>
from incarnation-1, and <KN0 ,VN0> from incarnation-N.

• A slicetable then refers to a sequential arrangement of slices
on the SSD, each slice corresponding to a given slot. A slice-
table can span multiple SSD blocks. In Figure 3b, the slice-
table contains slice-0, slice-1, . . ., slice-M.

• A SliceHash is comprised of both the in-memory hash table
and the on-SSD slicetable.

Slicing improves lookups. The main advantage of using slicing
is that lookup is vastly simplified and more efficient compared to
storing incarnations directly on the SSD.

When incarnations are stored directly on the SSD, we may have
to examine all incarnations since the key may be present in any of
them. Since each incarnation occupies a different set of SSD pages,
a key lookup may incur multiple SSD page reads.

In contrast, using slicing simplifies lookups: we hash a key to
obtain the slot, and simply read the corresponding slice. We then
compare the input key against the entries in the slice to obtain the
relevant value. For example, in Figure 3b, look ups for keys in the
slot-0 of all incarnations only require reading the corresponding
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Figure 4: Partitioned SliceHash

slice-0. By limiting the size of a slice to be one or a few pages
(DP1), we correspondingly limit the cost of lookup.
Impact on inserts. While slicing positively impacts lookups, it
makes inserts complex. In particular, when flushing a full in mem-
ory hash table to the SSD, we need to maintain the structure of
the slicetable on the SSD. Because a slice has entries from all in-
carnations, we would need to modify each slice to include entries
from the new incarnation. However, the cost of this operation gets
amortized over multiple inserts.

We first read as many blocks of a slicetable as possible from the
SSD to memory (since, the entire slicetable might not fit in mem-
ory). This amounts to a “large” read and hence can be performed
at high throughput (DP5). We then modify these blocks at the ap-
propriate positions for each slice, and write back to the SSD; as
DP4 indicates, such large writes help leverage channel-level paral-
lelism. We continue reading, modifying and writing back the sub-
sequent remaining blocks of the slicetable, till the whole slicetable
is modified on SSD.

While this imposes a high overhead, it is only incurred when the
in-memory hash table is full. Since the vast majority of insert op-
erations still happen in memory, the impact of this flush operation
on an average insert is small. We further discuss in §5.1.1 how we
reduce these overheads.

To summarize, the basic operations in SliceHash are as follows:
Inserts and updates: Keys are inserted only into the in-memory

hash table. When this becomes full, we flush it to the SSD while
maintaining the slicetable structure. When the on-SSD slicetable
becomes full, we employ the simple “eviction policy” of overwrit-
ing the oldest incarnation. For updates, we simply insert the new
key-value pair in the in-memory hash table.

Lookups: We first look up the key within the in-memory hash
table. If the key is not found, we read the corresponding slice from
the SSD, scan the entries for all incarnations from the latest to the
oldest. This ensures that the lookup does not return stale values in
the face of updates.

5.1.1 Partitioning SliceHash
Maintaining a single large slicetable spanning the entire SSD is

not scalable: in particular, this can cause the flush of the in-memory
hash table to take an undue amount of time during which lookup
operations can also be blocked (note that SSD I/Os are blocking).
Further, it requires multiple SSD I/Os for reading, modifying and
writing back the single large slicetable to SSD. To mitigate this and
control the worst case insertion cost, we adopt a strategy similar

to BufferHash: We partition the in-memory hash table to multiple
small in-memory hash tables based on the first few bits of the keys’
address space. We then maintain a separate slicetable for each in-
memory hash table (shown in Figure 4). If an in-memory partition
becomes full, we only need to update the corresponding (smaller)
slicetable on the SSD. Thus, we can read the smaller slicetable en-
tirely in memory, modify it at appropriate positions, and write it
back to SSD.

Henceforth, we assume a partitioned SliceHash is in use. Fur-
thermore, we use the term “in-memory hash table” to refer to one
of the partitions in memory (Figure 4).

5.1.2 Some Optimizations
Note that, for ease of explanation, we present the case of a simple

hash table with a single entry per slot. However, we can trivially
support hash tables with a fixed-size bucket of entries for every
slot; in this case, each slice will have buckets of entries from all
incarnations for a given slot. We can also support an N-function
Cuckoo hash table [23]; in this case, a key lookup may need to read
up to N slots in the worst case (when the key is not found in the
first N −1 slots). Lookup cost is bounded by N page reads.

SliceHash may require an SSD page read for a key lookup even
if the key is not present in the entire data structure. Additional
memory, if available, can be used to reduce such spurious lookups
through the use of a summary data structure, such as a Bloom filter,
for every slicetable. All lookups are first checked against Bloom
filters. SSD operations are issued only if the Bloom filters indicate
that the key is present. Crucially, our design can use memory op-
portunistically: e.g., we maintain Bloom filters only for some parti-
tions, e.g., those that are accessed frequently. This gives SliceHash
the ability to adapt to memory needs, while ensuring that in the ab-
sence of such additional memory, application performance targets
are still met.

5.2 Adding concurrency to SliceHash
In order to leverage the parallelism inherent to SSDs, I/O re-

quests should be issued in such a manner that they are spread uni-
formly across channels (DP3). We use two components to achieve
this: (1) a scheduler for request selection, and (2) a worker for SSD
reads/writes.

The scheduler processes requests in batches. It first process all
requests that can be instantly served in memory. Then, it processes
lookup requests which require reading from the SSD. We have de-
veloped a channel-estimator (described later) to estimate the map-
ping between read requests and channels. Using these estimates,
the scheduler finds a set of K requests (we choose K as the size of
the SSD’s NCQ (native command queue)).

The request selection algorithm works as follows. The goal here
is to ensure that requests get uniformly distributed across channels
to optimally exploit channel parallelism offered by NCQ. To meet
this objective, we maintain a “depth” for each channel, which esti-
mates the number of selected requests for a channel. We take multi-
ple passes over the request queue until we have selected K requests
(size of SSD’s NCQ). In each pass, we select requests that would
increase the depth of any channel by at most 1. In this manner, we
first find the set of read requests to be issued.

The scheduler then instructs the worker to process the chosen
read requests in parallel. The worker simply employs multiple threads
to issue requests to the SSD. Each thread is “associated” with a
channel and is assigned requests that correspond to this channel.
When a thread completes a request, it accepts new requests for the
channel. As the SSD page reads complete, the worker searches the
entries of all incarnations on the pages for the input key. After pro-



Symbol Meaning Symbol Meaning Symbol Meaning
n Number of partitions F Total SSD size rp Page read latency
s Size taken by a hash entry M Total memory size rb Block read latency
u Utilization of the hash table N Number of SSDs wb Block write latency

se f f Effective size of the hash entry (= s/u) P Size of an SSD page/sector
k Number of incarnations (= F/M) B Size of an SSD block

rwrite Ratio of insertions to block writes H Size of a single hash table (= M/n)
R Insert rate S Size of slicetable (= H × k)

Table 2: Notations used in cost analysis

cessing lookups, the scheduler assigns SSD insert requests to the
worker soon after an in-memory hash table fills up and needs to be
flushed to the SSD. The worker accordingly reads/writes slicetables
from/to the SSD.
Channel Estimation. We now describe a simple technique to esti-
mate the channels corresponding to the read requests issued to the
SSD, which is a crucial component in performing concurrent I/O
on the SSD (DP3). We focus on SSDs that use write-order mapping
(the mapping strategy can be inferred using the techniques in [18]
as mentioned in §4). Similar approaches can be employed for SSDs
that use other write policies.

As discussed in §4, chunk writes in write-order mapping are
striped across channels, i.e., the first write goes to the first chan-
nel, the second write goes to the second channel, and so on. We
leverage this property and restrict the size of a slicetable to be a
multiple of N ×ChunkSize, where N is the number of channels.
Thus, whenever a slicetable is written to the SSD, there will be N
chunk writes, with the ith chunk write going to the ith channel. In
other words, once we determine the relative chunk identifier (first,
or second, or Nth) for an offset in the slicetable, we can determine
the channel. The relative chunk identifier can be determined as the
offset modulo chunk size. Although this is a heuristic, experiments
show that it is remarkably effective at helping the scheduler sched-
ule requests across channels (§7).

5.3 Leveraging multiple SSDs
Due to its simple design and low resource footprint, SliceHash

can be easily extended to run across multiple SSDs attached to a
single machine. We elaborate below on two possibilities: one that
offers high throughput and the other that offers low memory foot-
print.
Throughput-oriented design. We can exploit multiple SSDs to in-
crease parallelism and obtain high throughput. To do this, we parti-
tion the key-space across multiple SSDs so that incoming requests
are distributed across SSDs and can be processed by SSDs in par-
allel.
Memory-oriented design. We can also exploit multiple SSDs to
lower the memory footprint of SliceHash. In this design, a slic-
etable for an in-memory hash table expands across multiple SSDs,
i.e., each slice has its entries stored across multiple SSDs. So the
slicetable can contain a larger number of incarnations compared
to the number of incarnations when using a single SSD. As the
number of incarnations increases, the memory footprint is reduced
(§7.4). Although more incarnations must be read when reading a
slice, lookups can be issued to multiple SSDs in parallel, avoiding
any loss in performance.

5.4 Analysis
In this section, we analyze the I/O latency and the memory over-

head of SliceHash. We also estimate the number of writes to the
SSD per unit time, and its impact on SSD lifetime. Alongside, we
illustrate the knobs SliceHash offers to easily control cost-perform-

ance trade-offs; such tunability is missing from almost all prior de-
signs. Table 2 summarizes the notation used.

Memory overhead per entry. We estimate the memory overhead
per entry. The total number of entries in an in-memory hash ta-
ble is H/se f f , where H is the size of a single hash table and se f f
is the effective average space taken by a hash entry (actual size
(s)/utilization (u)). The total number of entries overall in SliceHash
for a given size F of the SSD is: (F+M

H )× H
se f f

= F+M
se f f

Here, M is the total memory size. Hence, the memory overhead
per entry is, M

#entries , i.e., M
F+M × se f f , or 1

k+1 × se f f , where k is the
number of incarnations.

For s = 16B (key 8 bytes, value 8 bytes), u = 80%, M = 1GB,
and F = 32GB, the memory overhead per entry is 0.6 bytes/entry.

In contrast, state-of-the-art approaches for SSD-based hash ta-
bles, e.g., SILT [25] and BufferHash [14] have memory overheads
of 0.7 bytes/entry and 4 bytes/entry, respectively. The use of Bloom
filters (used to prevent lookups from incurring multiple SSD reads
across incarnations) in BufferHash imposes high memory overhead.

Insertion cost. We estimate the average time taken for insert oper-
ations. We first calculate the time taken to read a slicetable and then
write it back. This is given by: ( S

B × rb +
S
B ×wb), where S is the

size of the slicetable, B is the size of an SSD block, and rb and wb
are the read and write latencies per block, respectively. This flush-
ing happens after H/se f f entries are inserted to the hash table; all
insertions up to this point are made in memory. Hence, the average
insertion cost is

( S
B × rb +

S
B ×wb)×

se f f
H

Replacing S by H ∗ k, we get (rb+wb)×se f f ×k
B , which is indepen-

dent of the size of the hash table.
For a typical block read latency of 0.31ms [13], a block write

latency of 0.83ms [13], s = 16B, M = 1GB, F = 32GB, and u =
80%, the average insertion cost is ∼ 5.7µs. Similarly, the worst case
insertion cost of SliceHash is (0.31+0.83)× S

B ms. By configuring
S to be same size as B, we can control the worse case insertion cost
to (0.31+0.83) = 1.14ms.

In contrast, BufferHash has average and worst case insertion la-
tencies of ∼ 0.2µs and 0.83ms, both of which are better than Slice-
Hash. We believe that the somewhat higher I/O costs are an accept-
able trade-off for the much lower memory footprint in SliceHash.

Lookup cost. We consider a Cuckoo hashing based hash table im-
plementation with 2 hash functions. Suppose that the probability
of success for the first lookup is p. For each lookup, a correspond-
ing slice is read. Configuring H, the size of an in-memory hash
table, to match that of a page, the average lookup cost becomes
rp +(1− p)× rp or (2− p)× rp, assuming that all of the lookups
go to the SSD. For p= 0.9,rp = 0.15 ms, the average lookup cost is
0.16 ms. SILT and BufferHash have a similar average lookup cost.

The worst case happens when we have to read both pages cor-
responding to the two hash functions. Thus, the worst case lookup
latency is 2× rp. For rp = 0.15 ms, this cost is 0.3 ms. In contrast,



BufferHash may have very high worst case lookup latency because
it may have to scan all incarnations due to the false positives of
Bloom filters. For k = 32, this cost would be as high as 4.8 ms.

Frequency of SSD writes, and knobs for tunability. We estimate
the ratio of the number of insertions to the number of block writes
to the SSD; we denote this as rwrite. A hash table becomes full after
every H/se f f inserts, after which the corresponding slicetable on
the SSD is modified. The number of blocks occupied by a slicetable
is S/B or k×H/B. Thus, rwrite =

H
se f f

× B
k×H = B

k×se f f

Thus, by increasing the number of incarnations k, the frequency
of writes to the SSD (which is inversely proportional to rwrite) also
increases. This in turn affects the overall performance.

Note, however, that increasing the number of incarnations also
decreases the memory overhead as shown earlier. We investigate
this dependency in more detail in §7.4 and find that our design
provides a smooth trade-off between memory overhead and per-
formance, allowing designers the flexibility to pick a point in the
design space that best fits their specific cost-performance profile.

Effect on SSD lifetime. SliceHash increases the number of writes
to the SSD which may impact its overall lifetime. We now estimate
the lifetime of an SSD as follows. For a given insert rate of R, the
number of block writes to the SSD per second is R

rwrites
or the aver-

age time interval between block writes is rwrites
R . Say the SSD sup-

ports E erase cycles. Also, assume that the wear leveling scheme for
the SSD is perfect. Then, the lifetime (T ) of the SSD could be ap-
proximately estimated as number of blocks, F

B , times erase cycles,
E, times the average time interval between block writes, rwrites

R , i.e.,
T = F×E×rwrites

R×B
Consider a 256GB MLC SSD drive that supports 10000 erase cy-

cles [16]. We use SliceHash on this SSD with M = 4GB of DRAM,
i.e., k = 64. With a 16B entry size and utilization of 80%, the ra-
tio rwrite would be 102.4. Even with R = 10K inserts/sec (required,
e.g., for a WAN optimizer connected to 500 Mbps link), the SSD
would last 6.8 years. Thus, despite an increase in the writes to SSD,
its lifetime would still be reasonably long.

In sum, our analysis shows that our design patterns help Slice-
Hash to reduce the memory overhead to 0.6 bytes/entry and limit
the lookup cost to 1 page read on average, without significantly af-
fecting the average insert performance or SSD lifetime. A simple
knob—the number of incarnations—helps control the performance-
cost trade-off in a fine-grained fashion. We empirically study the
performance and flexibility benefits of SliceHash in §7.

Next, we discuss how our key techniques can also be applied to
other (hashing-based) data structures.

6. GENERALITY
In this section, we discuss how the five design patterns discussed

in §3 and the slicing primitive discussed in §5, can be used to de-
sign other hashing-based data structures, particularly, Bloom fil-
ters and locality sensitive hashing (LSH)-based indexes. Many of
the supporting design techniques we used in SliceHash—the use
of incarnations, slices, slicetables, and optimizations for multiple
SSDs—are derived directly from the design patterns and hence, as
argued below, they also apply directly to other data structures.
Bloom Filters. Bloom filters have traditionally been used as in-
memory data structures [8]. As some recent studies have observed
[17, 22], with storage costs falling and data volumes growing into
the peta- and exa-bytes, space requirements for Bloom filters con-
structed over such datasets are also growing commensurately. In
limited memory environments, there is a need to maintain large

Bloom filters on secondary storage. We show how we can apply
our techniques for supporting Bloom filters on SSD storage effec-
tively.

Similar to SliceHash, we maintain several in-memory Bloom
filters and corresponding slicefilters on the SSD; the in-memory
Bloom filters are written to the SSD as incarnations. Each slice in a
slicefilter contains the bits from all incarnations taken together for
a given slot.

In traditional Bloom filters, a key lookup requires computing
multiple hash functions and reading entries corresponding to the
bit positions computed by the hash functions. In our case, for each
hash function we first look up the corresponding in-memory Bloom
filter and then the corresponding slicefilter on the SSD.

The number of hash functions would determine the number of
page lookups, which could limit the throughput. We now argue how
this cost can be controlled.

Since SSD storage is much cheaper than DRAM, we can use
more space per entry on the SSD – i.e., use a large m/n where m
and n are the Bloom filter size and the number of unique elements,
respectively; this allows us to use fewer hash functions (smaller
h) while maintaining similar overall false positive rate [1]. For ex-
ample, for a target false positive rate of 0.0008, instead of using
m/n = 15 and h = 8, we can use m/n = 32 and h = 3. By reducing
h, we can reduce the number of page lookups and improve perfor-
mance.

Our design patterns and the techniques we derive from them en-
able us to reduce the effective memory footprint per key (where
a “key” refers to a unique element inserted into the Bloom filter)
while achieving high performance, similar to the trade-offs we were
able to achieve with SliceHash. For example, choosing m/n = 32,
we can use a combination of a 256MB DRAM and a 64GB SSD
(leading to 256 incarnations per Bloom filter) to store Bloom fil-
ters. This results in an effective memory overhead of 0.125 bits per
entry and causes block writes to the SSD every 128 key insertions.
Our evaluation in §7.5 shows that we achieve good throughput with
this configuration.
LSH-based index. Locality sensitive hashing [24] is a technique
used in the multimedia community [26, 9] for finding duplicate
videos and images at large scale. LSH systems use multiple hash
tables. For each key, the corresponding bucket in each hash table is
looked up. Then, all entries in the buckets are compared with the
key to find the nearest neighbor based on a certain distance metric.

In SliceLSH, each LSH hash table is designed using SliceHash.
When a query arrives, it is distributed to all SliceHash instances.
Leveraging the design patterns, we can subtly tweak the data struc-
ture to more closely align with how LSH works and ensure im-
proved I/O performance. Specifically, when we write in-memory
LSH hash tables to the SSD, we arrange them such that: (1) all
chunks (group of consecutive logical pages assigned to same chan-
nel, as defined in §4.2) of each slicetable get mapped to the same
channel (this is in contrast with SliceHash where each chunk in a
slicetable may go to a different channel), and (2) the chunks cor-
responding to different LSH hash tables map to different chan-
nels. We write in-memory LSH hashtables to the SSD together;
while writing to the SSD, we rearrange the chunks of LSH sliceta-
bles to satisfy the above properties. The benefit of this approach is
that multiple LSH hash table lookups for a given key will be uni-
formly distributed over multiple channels. This helps us maximally
leverage the intrinsic parallelism of SSDs resulting in high lookup
throughput (§7).



7. EVALUATION
In this section, we measure the effectiveness of our design pat-

terns as applied to the three different indexes described above, and
we show the flexibility offered and the generality of our design
choices. For simplicity, a majority of our evaluation focuses on
SliceHash.

7.1 Implementation and Configuration
We have implemented SliceHash in C++ using ∼3K lines of

code. I/O concurrency is implemented using the pthread library.
We use direct I/O for access to the SSD. We use the simple “noop”
scheduler in the Linux kernel (which implements basic FIFO sched-
uling of I/O requests) for leveraging the intrinsic parallelism of
SSDs.

Each hash table is implemented using Cuckoo hashing [23] with
2 hash functions and 3 entries per bucket, which corresponds to
86% space utilization. As mentioned in §5, we have multiple in-
memory hash tables. The size of each of these is 128KB, so each
can hold ∼7K key-value entries of size 16B each. Slicetables cor-
responding to different in-memory hash tables are arranged across
continuous logical block addresses on the SSD.

We evaluate SliceHash on a 128GB Crucial M4 SSD attached to
a desktop with dual 2.26 GHz quad-core Intel Xeon processor. We
use 32 threads for issuing concurrent I/O requests, corresponding
to the number of channels in the Crucial SSD. The size of the NCQ
is also 32.

Unless otherwise specified, the size of each slicetable is 4096
KB and the slicetable contains 32 incarnations of an in-memory
hash table. This amounts to using 4GB DRAM in total toward the
SliceHash data structure.

7.2 SliceHash Performance
We evaluate the lookup and insert performance of SliceHash, ex-

amining its throughput, memory footprint, and CPU overhead un-
der different mixes of read and write workloads. We compare Slice-
Hash with BufferHash and SILT.
Methodology. BufferHash [14] does not consider concurrent I/O
access. For a fair comparison against SliceHash, we added con-
currency to BufferHash using the pthread library. We also added
locking mechanisms to ensure that no two threads access the same
in-memory hash table of BufferHash at the same time. We use a
similar configuration as in [14], i.e., 16 incarnations and 128 KB in-
memory hashtable partition with maximum of 4096 entries. We use
8GB DRAM for in-memory hashtables, 8GB DRAM for Bloom
filters and 128 GB for flash SSD. The memory footprint of this
configuration is ∼ 4 byte/entry.

SILT [25] considers concurrent access by default. We use 4 SILT
instances with 16 client threads concurrently issuing requests. A
merge operation is triggered when a partition has one or more Hash-
Stores; we do not limit the convert or merge rates. At the beginning
of each experiment, we insert 1 billion random key-value pairs to
“warm-up” SILT’s stores.

We use YCSB [19] to generate uniformly random key-value work-
loads with varying lookup and insert ratios.1 Each workload con-
sists of 1 billion operations, unless otherwise noted.
Lookup performance. Figure 5a shows the performance of the
three systems—SliceHash (SH), multi-threaded BufferHash
(BH+MT), and SILT (SILT)—for a lookup-only workload. We ob-
serve that SliceHash achieves 69K lookups/sec while SILT and
BH+MT achieve only 62K lookups/sec (10% lower) and 57K look-

1We use the upper 8 bytes of the SHA1 hash of each YCSB-
generated key as our 8 byte key.

Percentage Memory Footprint (bytes/entry)
Inserts SliceHash BH+MT SILT

0% 0.6 4 0.21
50% 0.6 4 0.21–0.57

100% 0.6 4 0.21–1.46

Table 3: Memory footprint under various workloads

Percentage CPU Utilization (%)
Inserts SliceHash BH+MT SILT

0% 16 18 27
50% 12 24 67

100% 8 92 72

Table 4: CPU utilization under various workloads

ups/sec (12% lower), respectively. SliceHash achieves higher look-
up performance because it exploits channel-level parallelism by
running multiple threads accessing different channels in parallel.
In contrast, neither SILT nor BH+MT are designed to exploit such
channel-level parallelism.
Insert performance: We now study the insert throughput of Slice-
Hash. Figure 5b shows the performance of the three systems for
a continuous insert-only workload. We observe that SliceHash can
achieve 125K inserts/sec. In contrast, BufferHash can achieve al-
most 1100K inserts/sec for the same configuration (i.e., 128 KB
in-memory hash table), and SILT can achieve 254K inserts/sec.

BufferHash achieves much better insert performance, since it
is write-optimized structure. However, BufferHash imposes very
high memory footprint (∼4 bytes/entry). SILT achieves better in-
sert performance but at the expense of an /increase in memory foot-
print (0.21 - 1.46 bytes/entry) due to a backlog of HashStores, as
shown in Table 3. In contrast, SliceHash keeps the memory foot-
print small (0.6 bytes/entry) while achieving reasonably good insert
performance. In fact, by bounding SILT’s memory footprint to 0.6
bytes/entry, the insert rate of SILT is significantly impacted and re-
duced to only 46K inserts/s (as shown by “SILT-cap” in Figure 5b.
Thus, under same memory footprint, SliceHash is ∼3X better than
SILT.

We believe that the reduced insert performance of SliceHash is
an acceptable trade-off for the significantly low memory overhead
(Table 3) and better/more consistent lookup performance offered
by SliceHash.

Moreover, SliceHash can be augmented with a small write-
optimized table (using a BufferHash-like data structure) for han-
dling bursts of writes; this table can be written back to SliceHash
during a low I/O activity period. SILT uses a similar idea; it uses
a write-optimized data structure for handling writes, which is later
merged into SILT’s read-optimized data structures. However, merg-
ing in SILT is far more compute-intensive (needs sorting) than writ-
ing a hash table back to a slicetable with SliceHash, which just
requires copying entries to appropriate positions. As shown in Ta-
ble 4, the average CPU utilization2 during an insert-only workload
is 72% when running SILT and 8% when running SliceHash.
Mixed workload. Finally, we investigate how SliceHash performs
under a continuous workload of 50% lookups and 50% inserts. Fig-
ure 5c shows the performance of the three systems in this mixed
workload setting. We observe that SliceHash provides 105K ops/sec,
versus 121K ops/sec for BH+MT and 92K ops/sec for SILT.

BH+MT only has to write the buffer to the SSD when the buffer
becomes full, while SILT and SliceHash have to perform extra op-
erations, which affect their performance. SliceHash performs 14%

2Utilization is the sum of %user, %nice, and %system as reported
by iostat at 1 second intervals.
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better than SILT, and imposes very little CPU overhead (12%). In
contrast, SILT imposes high CPU overhead (67%) due to its back-
ground converting and merging operations (Table 4).

7.3 Contribution of Optimizations
We now study how the two main parallelism-centered optimiza-

tions—request-reordering and slice-based data layout—contribute
to SliceHash’s performance.
Request-reordering. We study the extent to which reordering can
be beneficial compared to a naive scheme of issuing requests in
FIFO order. SliceHash-noCA (i.e., SliceHash with no channel-
awareness) does not consider the request-to-channel mapping when
assigning requests to a thread; requests are simply assigned to
threads in the order the requests are made.

We consider three types of workloads to study the impact: (1)
Random: the keys are generated randomly, so the distribution of
requests among channels is also random; (2) Skewed: the channel
distribution is skewed, i.e., a certain number of requests (config-
ured by the skew parameter S) go to the same channel, while the
remaining requests are evenly distributed across channels; and (3)
Ordered: the requests are uniformly distributed across channels,
however their ordering is such that the first K requests go to first
channel, the second K requests go to second channel and the ith set
of K requests go to channel i mod N (where N is the number of
channels; N = 32 for Crucial SSD). Essentially, if K = 1, even a
FIFO scheme would have all 32 requests going to different chan-
nels (the best case), while if K = 32, it would result in all flash page
read requests going to the same channel (the worst case).

Figure 6 shows the performance of SliceHash-noCA relative to
the performance of SliceHash. In the worst case (Ordered (K=16)),
SliceHash-noCA can only achieve 42% of SliceHash performance.
Under a small skew of 5 requests (S=5), the performance drops by
17%; larger skew (S=10) deteriorates performance by almost 30%.
Even with a random workload, where keys are likely to be evenly
distributed across channels, we see a performance drop of 15%.
These results indicate that channel-awareness is crucial to high per-
formance in SliceHash.

# Incarnations Insert-only Mixed Memory footprint
(ops/sec) (ops/sec) (B/entry)

16 207K 110K 1.1
32 139K 93K 0.6
48 85K 79K 0.38
64 66K 70K 0.27

Table 5: Memory vs. performance trade-off

Slicing. Slicing helps in reducing SliceHash’s memory footprint
compared to BufferHash’s use of Bloom filters. In principle, Buffer-
Hash could avoid using Bloom filters and maintain the same mem-
ory footprint as SliceHash while leveraging concurrency to obtain
good performance. However, we show that doing so has a severe
performance impact.

We use the lookup-only workload from §7.2 to measure the through-
put. We observe that BufferHash without Bloom filters achieves
very low performance, only 8K lookups/sec. In contrast, SliceHash-
noCA achieved 57K lookups/sec. Since the central difference be-
tween SliceHash-noCA and Bufferhash without Bloom filters is the
use of slicing, this result shows that slicing is crucial for collectively
achieving high performance and a low memory footprint.

7.4 Tuneability in SliceHash
SliceHash is highly flexible and can be tuned to match applica-

tion requirements. SliceHash has a very small memory footprint
(∼0.6 bytes/entry), and it can leverage additional memory to im-
prove lookup performance, e.g., by using Bloom filters (§5.1.2). It
also has a small CPU footprint, so it can easily be used with other
applications requiring compute-intensive tasks. In contrast, Buffer-
Hash has a high memory footprint (Table 3), and SILT imposes
high CPU overhead due to continuous sorting (Table 4); these as-
pects limit their suitability to a range of important applications.

In addition, SliceHash provides the flexibility to tune the mem-
ory footprint at the cost of performance, and it can scale to multiple
SSDs without usurping memory/CPU, as we show below.
Memory footprint vs. Performance. By increasing the number of
incarnations for a given SSD size and hence, using larger slicetable,
we can reduce the memory footprint of SliceHash (memory foot-
print depends on the ratio of size of the in-memory hashtable and
size of the slicetable). The side effect is that the number of block
writes to flash SSDs is higher (since larger slicetable gets written
to SSD when hashtable becomes full), which can affect the perfor-
mance. Table 5 shows this trade-off for mixed (50% lookup/50%
insert) and insert-only workloads. SliceHash provides a through-
put between 110K-70K operations/sec for a mixed workload and
207K-66K operations/sec for an insert-only workload; SliceHash’s
memory footprint ranges from 1.1 bytes/entry to 0.27 bytes/entry.
The lookup-only workload is not shown here, as performance re-



# SSDs Lookup-only Mixed Memory footprint
(ops/sec) (ops/sec) (B/entry)

1 69K 93K 0.6
2 138K 186K 0.3
3 207K 279K 0.2

Table 6: Leveraging multiple SSDs

mains close to 69K lookups/sec regardless of the number of incar-
nations.
Scaling using multiple SSDs. We evaluate SliceHash on our Intel
Xeon machine using up to 3 SSDs for both the high-throughput and
low memory footprint configurations outlined in §5.3.

We find that SliceHash can provide linear scaling in performance
with the throughput-oriented configuration (Table 6). With 3 SSDs,
SliceHash offers 207K ops/sec for a lookup-only workload, and
279K ops/sec for a mixed workload. Because of its low CPU and
memory footprint, SliceHash can easily leverage multiple SSDs on
a single physical machine to match higher data volumes and pro-
vide higher overall throughput without usurping the machine’s re-
sources. Neither SILT nor BufferHash can scale in this fashion: the
former due to high CPU overhead (67% CPU utilization when one
SSD is used; 3 SSDs exceed the CPU budget for a single machine)
and the latter due to high memory overhead (48 GB for 3 SSDs).

In the memory-oriented configuration, SliceHash’s memory over-
head falls as the number of SSDs is increased, to 0.2 B/entry when
3 SSDs are used. But the throughput stays the same as using a sin-
gle SSD. Neither SILT or BufferHash can offer similar scale down
of memory.

7.5 Generality: SliceBloom and SliceLSH
We now show how our general design patterns improve the per-

formance of other indexes.
We evaluate SliceBloom on the 128GB Crucial SSD using 512

MB DRAM. We use m/n = 32 and k = 3 hash functions with
a memory overhead of 0.1 bits/entry. Under a continuous mixed
workload, our system can perform 15K ops/sec. With naive par-
allelism, the system performance can drop to 5K ops/sec, espe-
cially when all requests go to the same channel. In contrast, Bloom-
Flash [22] achieves similar performance for a mixed workload, but
on a high-end Fusion-io SSD (100,000 4KB I/Os per sec) that costs
30X more ($6K vs. $200). Furthermore, on a low-end Samsung
drive, BloomFlash only provides 4-5K lookups/sec.

We also evaluate SliceLSH on the Crucial SSD. We use 10 hash
tables, where each hash table uses 256MB in memory, and the cor-
responding slicetable occupies 8GB on flash. SliceLSH can per-
form 6.9K lookups/sec, as it has to look up each hash table. By de-
sign, SliceLSH can intrinsically exploit channel parallelism. Hence,
our system consistently offers similar performance under various
workload patterns (results omitted for brevity).

7.6 Summary of key results
Our evaluation results show that our general design patterns im-

prove the performance as well as tunability and flexibility of vari-
ous indexes. Specifically,

• On a single SSD, SliceHash can achieve 69K lookups/sec,
10-12% higher than SILT and BufferHash. SliceHash can re-
tain high lookup performance under different workloads by
exploiting the internal parallelism of an SSD, while SILT’s
and BufferHash’s performance can drop by 30%.

• SliceHash has much lower memory overhead (0.6 bytes/entry)
compared to BufferHash (4 bytes/entry) and SILT (0.7
bytes/entry). Further, it has much lower CPU utilization (12%)

in comparison to SILT (67%) and BufferHash (24%) under
mixed lookups and inserts.

• SliceHash is highly flexible and tunable. SliceHash can be
easily tuned to vary the memory footprint from 0.6 bytes
to 0.27 bytes/entry, with slight degradation in performance
from 93K to 70K operations/sec under mixed lookups and
inserts. In addition, due to its low memory footprint and CPU
overhead, SliceHash can be easily scaled using multiple SSDs,
unlike other index designs.

• We also show that our design patterns are applicable to other
indexes (SliceBloom and SliceLSH), and can improve their
effectiveness.

8. DISCUSSION
Generality of SSD mapping policy. Using knowledge of the map-
ping policy for a Crucial SSD, we have shown how we can exploit
its internal parallelism to get high performance for our index de-
signs. Other SSDs may have different mapping policies, and sim-
ilar techniques can be used to exploit their intrinsic parallelism.
Even if the mapping policies are not completely known, certain
patterns can be learned to understand how to exploit intrinsic par-
allelism. In addition, we can also consider designing new inter-
faces for SSDs, which could help applications leverage the under-
lying parallelism without revealing its internal mapping policies.
We keep these problems open for future research.
Tolerating failures. Our designs maintain in-memory data struc-
tures which are vulnerable to system failures or crashes. This can
be addressed using standard techniques, such as, appending in-
memory inserts to a log file on an additional small SSD (similar
to SILT [25]). In the event of crashes, this log file can be used to
reconstruct the in-memory hash tables.
Large key-value pairs. Our designs are suited for small key-value
pairs so that the size of a slice is limited to one or a few pages
for a given number of incarnations. To accommodate large key-
value pairs (e.g., few KBs or more), our designs can be extended
by having additional indirection. Instead of storing the large value
in the slice, we can only store the location information of the large
value stored elsewhere on the SSD. This requires additional lookup,
however, it keeps the insertion cost small.

9. CONCLUSION
A key impediment in the design of emerging high-performance

data-intensive systems is the design of large hash-based indexes
that offer good throughput and latency under specific workloads
and at specific cost points. Prior works have explored point solu-
tions using SSDs that are each suited to a narrow setting and cru-
cially lack flexibility and generalizability.

In this paper, we develop a set of general techniques for build-
ing large, efficient and flexible hash-based systems by carefully
leveraging unique properties of SSDs. Using these techniques, we
first build a large streaming hash table, called SliceHash, that pro-
vides higher performance, while imposing low computation over-
head and low memory overhead, compared to the state-of-the-art.
Developers can easily tune SliceHash to meet performance goals
under tight memory constraints and satisfy the diverse requirements
of various data-intensive applications. The indexes also perform
well under a range of workloads. We illustrate the generality of our
ideas by showing that they can be applied to building other efficient
and flexible hash-based indexes.

Additionally, our work shows the promise of adopting the design
patterns and primitives we advocate to develop other general SSD-
based indexes.
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