
ECOS: Practical Mobile Application Offloading for Enterpri ses

Aaron Gember, Chris Dragga, Aditya Akella
University of Wisconsin, Madison

{agember,dragga,akella}@cs.wisc.edu

Abstract

Offloading has emerged as a promising idea to allow
handheld devices to access intensive applications with-
out performance or energy costs. This could be par-
ticularly useful for enterprises seeking to run line-of-
business applications on handhelds. However, we must
address two practical roadblocks in order to make of-
floading amenable for enterprises: (i) ensuring data pri-
vacy and the use of trusted offloading resources, and (ii)
accommodating offload at scale with diverse handheld
objectives and compute resource capabilities. We present
the design and implementation of an Enterprise-Centric
Offloading System (ECOS) which augments prior of-
floading proposals to address these issues. ECOS uses
a logically central controller to opportunistically lever-
age diverse compute resources, while tightly controlling
where specific applications offload depending on privacy,
performance, and energy constraints of users and appli-
cations. A wide range of experiments using a real proto-
type establish the effectiveness of our approach.

1 Introduction
Handheld devices such as smartphones and tablets are
being increasingly recognized as critical business tools,
and enterprises are targeting both specialized (e.g., line-
of-business) and common (e.g., dictation and transcrip-
tion) mobile applications to these platforms [15]. Un-
fortunately, the complexity and overhead of the appli-
cations [10, 12], and the accompanying data protection
issues, are seen as major impediments to full-fledged de-
ployment on handheld devices [2, 4].

Application-indepedent offloading frameworks have
long been recognized as an important mechanism for
enabling smartphone users to access resource-intensive
applications without incurring energy and performance
costs [7, 9, 10, 14, 16]. As handhelds become the pri-
mary platforms for some employees, we believe mo-
bile application offloading will be essential for running
resource-intensive enterprise applications–e.g., model-
ing and analysis tools, handwriting and speech recog-
nition, etc.—with suitable performance and energy us-
age. However, two key roadblocks currently prevent en-
terprise adoption of mobile application offloading.

1. Privacy and trust: Enterprise applications fre-
quently operate on data with strict privacy requirements,
requiring the use of trusted resources (e.g., servers in an
enterprise data center) for application execution. The

majority of offloading systems ignore such privacy re-
quirements, selecting compute resources solely based
on connectivity characteristics and processing capabili-
ties [8]. Even systems which are capable of limiting exe-
cution to specific compute resources [7] are insufficient,
as they overly restrict offloading opportunities and may
unnecessarily impose energy and latency costs.

2. Resource sharing and churn: Enterprises may
have thousands of employees using handheld devices, all
of which may desire offloading simultaneously. While
existing systems addresswhatandhowto offload from a
single device [10, 14], no attention has been given to the
effects of multiple devices with different objectives si-
multaneously offloading to the same compute resources.
The energy and latency benefits of offloading assumed
by some frameworks to be fixed [8, 10] will, at enterprise
scale, be quite dynamic. This dynamism increases even
more when considering the range of potential compute
resources at the disposal of enterprise users—idle desk-
tops, dedicated servers, remote clouds—and the changes
in capacity and availability that accompany this diversity.

We present an Enterprise Centric Offloading System
(ECOS) which can be coupled with existing offload-
ing frameworks to address the above roadblocks, en-
abling handhelds to play a significant role in enterprises.
ECOS’s central design guideline is to allowmany mobile
application offloads to opportunistically leverage diverse
compute resources, while tightly controlling where spe-
cific applications offload depending on privacy, perfor-
mance, and energy constraints of users and applications.

ECOS leverages an enterprise-wide controller to or-
chestrate all application offloads. The controller relies
on simple, yet expressive, privacy levels for administra-
tors to encode the data privacy requirements of applica-
tions and users. These privacy levels are translated to
(i) directives to mobile devices, when necessary, to en-
crypt offloading state transfers, and (ii ) limitations on the
compute resources considered as offloading destinations.
Applying encryption only when necessary and consid-
ering as many potential compute resources as possible
ensures data privacy requirements are met while mini-
mizing overhead and maximizing offloading opportuni-
ties. Furthermore, the controller uses fine-grained com-
pute resource management to multiplex offloads from
many devices onto a diverse set of resources. Careful
resource assignment guarantees offloading provides the
desired benefit in terms of latency, energy or both.

Key challenges arise in designing ECOS. First, we

1



show that securing offloads adds non-trivial latency and
energy overhead. Hence, careful choices must be made
in deciding whether to encrypt communications and
whether specific compute resources should be used. Sec-
ond, because a limited set of diverse compute resources
are shared by a variety of mobile applications with dif-
fering performance, energy and privacy requirements, we
must design clever allocation algorithms that adapt to di-
verse application demands and changing resource avail-
ability and ensure handhelds see equitable and substan-
tial benefits. Third, our approach should minimize the
amount of work handhelds undertake and shift a major-
ity of the decision-making to the controller. We describe
our solutions in Sections 3 and 4.

We evaluate a prototype of ECOS we developed for
the Android platform [5]. Using two applications repre-
sentative of enterprise workloads, 12 smartphones and up
to 6 servers, we measure the benefits ECOS can provide
in a small enterprise setting where devices have varying
goals and privacy constraints. Performance improves by
as much as 94% and energy savings can be up to 47%.

2 Prior Offloading Proposals
In offloading, parts of a mobile application are run on a
remote compute resource to improve performance, lower
energy usage, and/or offer higher utility. Many offload-
ing systems have been developed in the past decade.
AIDE dynamically partitions memory-demanding mo-
bile Java applications, minimizing the required com-
munication between the handheld and the compute re-
source [14]. Chroma uses developer-specified execu-
tion strategies (i.e., tactics) to divide execution of code
modules with varying complexity and accuracy between
local and remote resources [7, 13]. MAUI offloads
methods from .NET applications to a remote runtime
environment based on a history of energy consump-
tion [10]. CloneCloud uses function inputs and an of-
fline model of runtime costs to dynamically partition ap-
plications between a weak device and the cloud, with the
goal of increasing performance or improving failure re-
siliency [8, 9].

None of the proposals directly addresses the privacy
requirements of offloaded applications. Chroma pro-
vides some notion of resource trust [7], but with lim-
ited flexibility (Section 3). Alternative methods of aug-
menting a mobile device’s capabilities require the use of
specialized APIs [17, 19] or complex trust establishment
schemes [16]. ECOS addresses privacy through explicit
identification of data privacy levels required by applica-
tions and users. These privacy levels are used to make
dynamic decisions about whether to encrypt offloading
communication and which resources to consider using.

Furthermore, existing proposals focus onwhat and
how to offload from a single mobile device and do not

consider the effects of multiple offloads sharing compute
resources. In contrast, ECOS uses a central controller
to orchestrate all offloads, thus enabling careful resource
assignment to ensure many devices with varying goals
(energy savings, latency improvements, etc.) are able to
realize benefits from offloading. ECOS also takes ad-
vantage of the ability to reduce offloading overhead by
caching execution state on a compute resource [10], but
it does so in a way that considers resource churn.

3 Privacy and Trust
Offloading introduces the possibility for data to leave the
confines of a mobile device without an application’s ex-
plicit actions. Thus, data privacy, which is paramount in
enterprises, becomes an important concern.

The challenge in ensuring data privacy is balancing the
privacy requirements of enterprises with the ability to of-
fer significant energy and performance benefits from of-
floading. Sufficient privacy protection means both (a)
protecting execution state in transit and (b) limiting the
compute resources used for offloaded execution. One
way to address (b) is to statically specify the compute
resources each application trusts [7]. However, this elim-
inates the ability to adjust compute resource selection
based on the privacy requirements of the current appli-
cation invocation: e.g., a mobile user may utilize dic-
tation software to create confidential legal documents,
or they may use the application to write non-sensitive
emails. Flexibility is also important for addressing (a),
as the high overhead of encrypted communication (Sec-
tion 3.1) can significantly reduce offloading benefits.

We seek to identify privacy requirements at a suffi-
ciently fine granularity for offloading to be bothsecure
and beneficial. ECOS can rely on an admin-specified
policy to identify privacy requirements for specific ap-
plications/users, or ECOS can leverage information flow
tracking [11] for more dynamic decisions (Section 3.2).

3.1 Security Overhead
The simplest way to ensure privacy is to apply strictest-
case security mechanisms to all offloads regardless of the
data involved, e.g., encrypt all offloading communica-
tion. This avoids the complexity and overhead of iden-
tifying the privacy requirements of an offload, but it can
decrease offloading benefits and opportunities.

We illustrate the potential impact by quantifying the
overhead of always securing execution state in transit.
Our measurements use an Android emulator [5] and a
2GHz dual-core desktop running a native x86 version of
Android in a virtual machine [6]. The emulator and VM
both run our prototype capable of capturing and loading
execution state. We offload a single method call which
requires transferring a specific amount of execution state.

2



0.0

0.5

1.0

1.5

0 10 20 30 40
Size (KB)

T
im

e 
(s

)

factor(Type)

Receive

Send

(a) Unencrypted

0.0

0.5

1.0

1.5

0 10 20 30 40
Size (KB)

T
im

e 
(s

)

factor(Type)

Receive

Send

(b) Encrypted

Figure 1: End-to-end latency overhead

Figure 1 shows the latency overhead of offloading both
(a) without and (b) with TLS encryption. The latency
overhead more than doubles when encrypting execution
state in transit, translating to a direct reduction in the per-
formance benefits possible with offloading. For exam-
ple, if we transfer 15KB of execution stateunencrypted,
execution must be at least0.3s fasteron the compute re-
source, versus the mobile device, to provide performance
benefits. Whereas, if we transfer the same 15KB of state
encrypted, execution must be at least0.8s fasterto re-
alize any performance benefits. Furthermore, overhead
increases with the size of the transferred state. We dis-
cuss in Section 4.2 how to counter this effect by prefer-
ring the same compute resource for sequential offloads
and caching execution state on the resource. We also ob-
serve increases in energy overhead with encryption and
with larger state sizes but exclude the results for brevity.

The high overhead of encryption illustrates the impor-
tance of applying privacy mechanismsonly when needed.

3.2 When to Secure
Identifying when to secure in order to ensure privacy re-
quires determining the nature of data/state involved in
offloading. The data involved in a specific application
offload can beenterprise-private, user-private, or not-
private. Enterprise-privatedata should not be leaked
outside the enterprise, e.g., intellectual property such as
internal procedure documents.User-privatedata should
only be accessed by the current user of an application,
e.g., a patient’s medical record can only be accessed by
individuals working with the patient, per federal law.

In our ECOS prototype, we determine the privacy level
of an offload based on privacy levels statically assigned
to mobile devices and applications by an administrator.
Mobile devices may be classified based on who they be-
long to, e.g., the CEO’s smartphone is user-private or all
company-owned devices are enterprise-private. Appli-
cations are assigned privacy levels based on the strictest
level of private data they are expected to access (or gen-
erate). Thus, the assigned privacy levels subsume pri-
vacy constraints on individual data items and bytes. An
application is classified as not-private only if it haszero
likelihood of accessing private data. Existing enterprise
security policies, e.g., access control lists, or developer
input may aid admins in assigning these privacy levels.

We acknowledge that the granularity of applications

and users is quite coarse: ideally, an application should
be assigned a privacy level based on the specific data
objects it is accessing at a given point in time. To do
this, we propose extending ECOS with mechanisms to
track the flow of private information on the mobile de-
vice [11]. Data with known privacy requirements—e.g.,
data coming from specific servers, email senders, or file
locations—can be tracked, enabling dynamic knowledge
of the data contained in an offload. Given details on
which types of data are involved in an offload, either the
mobile user or our controller can decide which of the
three privacy levels applies. Flow tracking has relatively
low overhead—TaintDroid only imposes 14% overhead
on a CPU-intensive task [11]. The main challenge is de-
ciding what types of data should be tracked and at what
granularity, e.g., should data from emails be identified by
email sender, by sender domain, or solely by the fact that
it came from an email. We leave this as future work.

3.3 Securing Offload
The ECOS central controller uses the privacy level spec-
ification to determine what mechanisms are required to
ensure sufficient data privacy. The privacy required by
the offload is the stricter of the privacy level of the appli-
cation or the mobile device. The privacy level determines
(a) whether execution state should be encrypted in transit
and (b) which compute resources can be used.

A TLS-encrypted connection is established between
the mobile device and compute resource when the offload
is user-private, or when the offload isenterprise-private
but the handheld or compute resource is outside the en-
terprise. All other offloads use unencrypted connections
to reduce latency and energy overhead. The controller in-
forms the handheld and resource which connection type
to use; the resource only accepts connections of that type.

The compute resources considered for offloading are
limited to resources which provide a level of trust at least
as high as the offload privacy level. For example, a re-
mote cloud may only be trusted withnot-privateoffloads,
an enterprise data center server withenterprise-private
offloads, and one’s own desktop withuser-privateof-
floads. The trust level of specific resources is specified
by administrators. Next, we discuss how to select a spe-
cific resource from the set of suitably trusted resources.

4 Resource Sharing and Churn
The second roadblock addressed by ECOS is supporting
simultaneously offloads from many mobile devices. Ex-
isting systems addresswhat andhow to offload from a
single device [9, 10, 14] but do not consider how mul-
tiplexing offloads from several devices on a single com-
pute resource will impact performance and energy ben-
efits. Enabling many handheld devices to opportunisti-
cally leverage the diverse compute resources in enter-

3



prise networks requires careful consideration of (a) the
performance constraints of different users and applica-
tions and (b) the changing availability of resources. A
further complication arises from the fact that we must
assign resources without knowing a priori when other ap-
plications will request specific types of resources. Below,
we discuss how ECOS addresses these challenges.

4.1 Multiplexing Offloads
Mobile applications typically offload with a goal of ei-
ther energy savingsor performance improvement. Of-
floads seeking energy savings are focused on avoiding
battery drain on the mobile device; their goal may be sat-
isfied by any trusted, available compute resource. In con-
trast, offloads seeking performance improvements are fo-
cused on having computation run faster on the offloading
resource than the mobile device; compute resources must
be carefully selected such that the resource has sufficient
idle computation capacity to satisfy this goal. A perfor-
mance seeking offload is not guaranteed to save device
energy, as the energy overhead of state transfer may ex-
ceed the energy savings from reduced CPU usage.

When there are always more suitable compute re-
sources (idle desktops, servers, etc.) than mobile ap-
plications desiring offloading, we can use a simple ap-
proach: an application offload is assigned to a dedicated
resource; after offloaded execution completes, a differ-
ent offload can be assigned to the resource. Dedicating a
resource’s CPU capacity to a single offload ensures per-
formance seeking offloads achieve some benefit.

Unfortunately, this simple approach is of limited use.
First, we expect in the future there will be orders of mag-
nitude more mobile applications desiring offloading. The
simple approach causes some applications to be denied
resources, forcing them to run on the mobile device. Sec-
ond, the approach cannot support more complex offloads,
e.g., parallel offload of different application parts [9].

When there are limited compute resources (e.g., due to
trust constraints, reduced resource availability, or a high
number of active mobile applications) we assign multiple
offloads to the same resource. ECOS relies on a straight-
forward scheduling heuristic for pairing offload requests
with resources that are likely to offer the desired bene-
fits and guarantees: Performance seeking offloads must
be assigned to resources whose unused CPU capacity ex-
ceeds the CPU speed of the mobile device, otherwise no
resource is assigned. Energy seeking offloads can be as-
signed to a resource regardless of its CPU capacity, as
we are not concerned with the execution time of these
offloads. However, to avoid an energy seeking offload
degrading the benefits received by a performance seek-
ing offload, energy seeking offloads are assigned to re-
sources only with other energy seeking offloads.

4.2 Resource Churn
A key issue in resource sharing pertains to whether the
compute resource used for offload should be changed
during the course of an application’s execution. Chang-
ing means that consecutive offloads can leverage differ-
ent resources, enabling fine-grained assignment of re-
sources that dynamically adapts to demand and resource
availability over time. However, this eliminates the pos-
sibility of caching execution state at compute resources
and only sending state deltas between subsequent of-
floads [10], an issue which becomes especially impor-
tant when using encrypted connections (Section 3.1).
ECOS minimizes state transfer overhead by maintaining
resource affinityas much as possible: that is, ECOS al-
ways seeks to offload an application to the same resource
every time. This allows ECOS to keep a partially loaded
runtime environment on the compute resource to quickly
serve future offloads from the same application and de-
vice.

Resource affinity relies upon the assigned resource
having a constant amount of CPU capacity available dur-
ing the lifetime of the application, which may not always
be true. Other applications/devices which have an affin-
ity to the same resource may decide to offload at the same
time, causing an over-subscription of CPU resources. Al-
ternatively, a compute resource may no longer be avail-
able, e.g. due to a cloud server instance being shutdown.
There are several options for how to proceed: (i) Deny
future offloads from the mobile device until CPU capac-
ity is available. This only works with resources which
remain running and only temporarily have insufficient
CPU resources. While simple, it may not adequately
leverage alternative idle resources in the network, and
it may prevent a device from offloading for a long pe-
riod. (ii ) Assign a new compute resource, requiring the
device to resend the full execution state. As mentioned
before, this could be quite costly in terms of overhead
but still allows offloading to occur, even if the benefits
are marginal. (iii ) Assign a new compute resource and
have the original resource migrate the state the next time
the device offloads. This is ideal from the perspective of
the mobile device, since it can still send a state delta at
the next offload. However, state migration significantly
complicates the system. The best behavior depends on
the characteristics of the network—the number of mo-
bile devices desiring offloading, the duration resources
remain available, etc. ECOS is flexible enough to be ex-
tended with whichever approach is most suitable.

5 ECOS Prototype
We prototype ECOS using (i) Android phones with a
modified Dalvik runtime environment, (ii ) servers run-
ning a modified Android image in a virtual machine, and
(iii ) a Python-based central controller.

4



Smartphones run a custom Android image with a
Dalvik runtime environment we modified (4500 LOC)
to support offloading. We instrumented Dalvik to check
at each method invocation if offloading should be trig-
gered.1 An “offload agent” running on the phone re-
quests a compute resource from the controller; applica-
tion execution proceeds directly on the device if no re-
sources are available. Otherwise, Dalvik establishes a
connection to the compute resource, using encryption
if dictated by the controller, and serializes and sends
all method arguments and any needed objects (deter-
mined using a mark and sweep algorithm) using cus-
tom state serialization code, similar to state transfer in
CloneCloud [9]. When offloaded execution completes,
Dalvik integrates the results and any object changes into
the execution state on the phone, making note of which
objects are still cached on the compute resource and
keeping the socket connection open for future offloads.

Compute resources run a native x86 version of An-
droid, with the same Dalvik modifications, in a Virtu-
alBox [6] VM. Running a version of Android built for
the same architecture as the compute resource is neces-
sary to realize code speed-up. A “restore agent” within
the Android VM is responsible for accepting socket con-
nections from phones, launching new Dalvik instances,
and loading the received execution state. After execution
completes, the state is serialized and sent to the phone;
the Dalvik instance remains for subsequent offloads.

The controller (1000 LOC) orchestrates all offloads.
Capacity information is received from compute re-
sources and offload requests are received from phones.
Using the provided privacy levels policy file, appropri-
ate resources are assigned and the phones and compute
resources are instructed whether to encrypt connections.

6 Evaluation
We evaluate ECOS with a range of experiments to es-
tablish the viability of supporting resource-intensive en-
terprise applications on handhelds. We study how well
ECOS (i) supports enterprise applications with different
latency, energy, and privacy needs, and (ii ) multiplexes
offloads and benefits from resource affinity.

We use two representative mobile applications2:
chess, which we use as an (admittedly artificial) stand-in
for a compute-intensive AI-based enterprise application
(e.g., non-linear decision-making [1]), and a speech-to-
text transcriber, whose behavior we are forced to emulate
due to Android’s lack of some crucial audio libraries.
The chess game plays against itself for 50 moves, with
10s delays every other move for user “think time.” The
mock speech recognition application models the state

1Resource-intensive methods are statically specified, but ECOS
could be extended to select methods at runtime, like MAUI [10].

2Real enterprise mobile applications were unavailable due to licens-
ing and lack of source code.

Figure 2: Comparison of application execution times

size, CPU usage, and memory usage of an actual speech
recognizer [3] for 20 recognitions spaced 10s apart.

We measure ECOS for a small enterprise setting using
a set of Android emulators and servers. Phone emulators
are used because we only had access to a limited num-
ber of unlocked Android phones. We confirmed the CPU
frequency was similar (20% faster on the emulator), and
memory usage was the same, by running both of our ap-
plications several times on a real ADP1 phone and in the
emulator. Our compute resources are 2.4GHz Intel quad
core machines with 4GB of RAM. Our controller runs
on a separate machine whose specs are the same. We es-
timate power consumption using an energy model [18],
which takes as input the number of packets and bytes
sent/received and CPU usage.

6.1 Full System Analysis
We present an analysis of ECOS for a small enterprise
setting consisting of 12 phones (P1-12) and 4-6 servers
(S1-6). P1-6 run chess and trust all servers; P7-12 run
speech recognition and trust up to 3 servers; P1-3 and
P7-9 seek performance improvements while the remain-
ing phones seek energy savings. The constraint of only
having 4 servers to serve 12 phones stresses ECOS, but
we find it still benefits most applications. With lesser
contention when 6 servers are available, the benefits from
ECOS become more significant and equitable.

Performance. The execution time (excluding delay
between moves/recognitions) for each phone is shown
in Figure 2. Without offloading, all applications take
approximately 350s to execute. Multiplexing offloads
amongst 4 servers significantly reduces the execution
time to between 22s and 87s for all phones, including
those seeking energy savings, except P10. P10 receives
no performance benefit because there is no server it trusts
that is available to serve offloads seeking energy sav-
ings. Furthermore, P4-6 have 50-60% higher execution
times than P1-3 although they are running the same ap-
plication. This is because P4-6 requested energy savings,
while P1-3 requested performance improvement.

Six servers provide enough resources forall phones
to improve performance. Execution time is 10-20% less
than with 4 servers because less multiplexing occurs.

5



Figure 3: Comparison of application energy usage

Energy. Our experiments show that ECOS also of-
fers energy benefits in the same offloading scenario (Fig-
ure 3). The energy savings ranges from 24% to 44% with
4 servers and 23% and 47% with 6 servers. Again with 4
servers, resources are constrained and ECOS is unable to
provide benefits to P10. Increasing the available servers
allows P10 to attain energy savings equal to its peers.

Although not present here, ECOS may impose energy
costs for applications that have requested performance
improvements. Likewise, some applications seeking en-
ergy savings may see a degradation in performance when
there is high resource contention. Since ECOS is oppor-
tunistic, the presence of this cost is workload dependent.

6.2 Resource Allocation Efficiency
We now evaluate how well ECOS shares resources
amongst many mobile devices. Using the 12 phone, 4
server setup above, we compare a one-to-one resource
assignment strategy to multiplexing with and without re-
source affinity. The execution time for each phone is
shown in Figure 4 for the three assignment scenarios.

First, we observe that one-to-one assignment results in
less offloading opportunities and higher execution times
for two-thirds of the phones. In some cases, e.g., P2,
execution takes more than twice as long. This results
from the inability to serve more than 4 offloads (as many
servers as we have) at any given time. At the same time,
a given offload typically takes less time to execute since
compute resources are not shared with other offloads:
e.g., P10 executes the fastest with one-to-one because it
gets full use of the CPU when assigned to a server.

Second, we observe that for most phones, resource
assignment with affinity results in lower total execution
time. This decrease stems directly from the decrease in
state transfer as a result of preserving execution state at
the same server, similar to MAUI [10]. However, avoid-
ing affinity can help provide a fair sharer of benefits
when the number of compute resources are limited: e.g.,
P10 receives significant benefit when using multiplexing
without affinity as there is more churn in assignments
and a greater opportunity for being allocated resources.

In summary, we find that ECOS can support multi-
ple applications with different performance and security

Figure 4: Comparison of different assignment algorithms

needs, offering significant, equitable benefit at low cost.

7 Conclusion
We presented ECOS, an Enterprise-Centric Offloading
System designed to address the security needs of mo-
bile applications and opportunistically leverage available
compute resources. ECOS extends the offloading deci-
sion process to take into account privacy requirements
and costs. In ECOS an enterprise-wide controller assigns
trusted compute resources to applications based on re-
source availability, administrator specified security poli-
cies, and the performance or energy savings goals of mo-
bile devices. We showed that ECOS provides both la-
tency and energy benefits, even in the presence of strict
privacy requirements and few compute resources, paving
the way for wider-spread adoption of offloading to assist
current and future enterprise mobile applications.

References
[1] AI enters the mainstream.http://domain-b.com/infotech/

itfeature/20070430 Intelligence.htm.
[2] Android enterprise security: Mobile phone data protection ad-

vice. http://searchsecurity.techtarget.com.
[3] CMU sphinx. http://cmusphinx.sourceforge.net.
[4] Developing enterprise applications for mobile devicesremains

way too hard.http://www.zdnet.com/blog/gardner.
[5] Google android.http://android.com.
[6] Oracle virtualbox.http://www.virtualbox.org.
[7] R. K. Balan et al. Tactics-based remote execution for mobile

computing. InMobiSys, 2003.
[8] B.-G. Chun and P. Maniatis. Dynamically partitioning applica-

tions between weak devices and clouds. InMCS, 2010.
[9] B.-G. Chun et al. Clonecloud: elastic execution betweenmobile

device and cloud. InEuroSys, 2011.
[10] E. Cuervo et al. MAUI: Making Smartphones Last Longer with

Code Offload. InMobiSys, 2010.
[11] W. Enck et al. Taintdroid: an information-flow trackingsystem

for realtime privacy monitoring on smartphones. InOSDI, 2010.
[12] L. Fiering and K. Dulaney. iPads: Not notebook replacements,

but still useful for business.Gartner, Inc., 2010.
[13] J. Flinn et al. Balancing performance, energy, and quality in per-

vasive computing. InICDCS, 2002.
[14] A. Messer et al. Towards a distributed platform for resource-

constrained devices. InICDCS, 2002.
[15] S. D. Nelson and D. A. Willis. Separating enterprise tablet appli-

cations from consumer apps.Gartner, Inc., 2011.
[16] M. Satyanarayanan et al. The case for vm-based cloudlets in mo-

bile computing.IEEE Pervasive Computing, 2009.
[17] S. Smaldone et al. Leveraging smart phones to reduce mobility

footprints. InMobiSys, 2009.
[18] L. Zhang et al. Accurate online power estimation and automatic

battery behavior based power model generation for smartphones.
In CODES+ISSS, 2010.

[19] X. Zhang et al. Securing elastic applications on mobiledevices
for cloud computing. InWorkshop on Cloud computing security,
2009.

6


