ECOS: Practical Mobile Application Offloading for Enterpri ses

Aaron Gember, Chris Dragga, Aditya Akella
University of Wisconsin, Madison
{agenber, dragga, akel | a} @s. w sc. edu

Abstract majority of offloading systems ignore such privacy re-
quirements, selecting compute resources solely based

Offloading has emerged as a promising idea to allonon connectivity characteristics and processing capabili-
handheld devices to access intensive applications withties [8]. Even systems which are capable of limiting exe-
out performance or energy costs. This could be pareution to specific compute resources [7] are insufficient,
ticularly useful for enterprises seeking to run line-of- as they overly restrict offloading opportunities and may
business applications on handhelds. However, we mustnnecessarily impose energy and latency costs.
address two practical roadblocks in order to make of- 2. Resource sharing and churn: Enterprises may
floading amenable for enterprises: (i) ensuring data prihave thousands of employees using handheld devices, all
vacy and the use of trusted offloading resources, and (iipf which may desire offloading simultaneously. While
accommodating offload at scale with diverse handheldxisting systems addreahatandhowto offload from a
objectives and compute resource capabilities. We presesingle device [10, 14], no attention has been given to the
the design and implementation of an Enterprise-Centrieffects of multiple devices with different objectives si-
Offloading System (ECOS) which augments prior of- multaneously offloading to the same compute resources.
floading proposals to address these issues. ECOS us&he energy and latency benefits of offloading assumed
a logically central controller to opportunistically lever by some frameworks to be fixed [8, 10] will, at enterprise
age diverse compute resources, while tightly controllingscale, be quite dynamic. This dynamism increases even
where specific applications offload depending on privacymore when considering the range of potential compute
performance, and energy constraints of users and applresources at the disposal of enterprise users—idle desk-
cations. A wide range of experiments using a real prototops, dedicated servers, remote clouds—and the changes

type establish the effectiveness of our approach. in capacity and availability that accompany this diversity
) We present an Enterprise Centric Offloading System
1 Introduction (ECOS) which can be coupled with existing offload-

Handheld devices such as smartphones and tablets aireg frameworks to address the above roadblocks, en-
being increasingly recognized as critical business toolsabling handhelds to play a significant role in enterprises.
and enterprises are targeting both specialized (e.g-, lineEeCOS’s central design guideline is to allomany mobile
of-business) and common (e.g., dictation and transcripapplication offloads to opportunistically leverage divers
tion) mobile applications to these platforms [15]. Un- compute resources, while tightly controlling where spe-
fortunately, the complexity and overhead of the appli-cific applications offload depending on privacy, perfor-
cations [10, 12], and the accompanying data protectiormance, and energy constraints of users and applications
issues, are seen as major impediments to full-fledged de- ECOS leverages an enterprise-wide controller to or-
ployment on handheld devices [2, 4]. chestrate all application offloads. The controller relies
Application-indepedent offloading frameworks have on simple, yet expressive, privacy levels for administra-
long been recognized as an important mechanism fotors to encode the data privacy requirements of applica-
enabling smartphone users to access resource-intensitiens and users. These privacy levels are translated to
applications without incurring energy and performance(i) directives to mobile devices, when necessary, to en-
costs [7, 9, 10, 14, 16]. As handhelds become the pricrypt offloading state transfers, ang (imitations on the
mary platforms for some employees, we believe mo-compute resources considered as offloading destinations.
bile application offloading will be essential for running Applying encryption only when necessary and consid-
resource-intensive enterprise applications—e.g., modekring as many potential compute resources as possible
ing and analysis tools, handwriting and speech recogensures data privacy requirements are met while mini-
nition, etc.—with suitable performance and energy us-mizing overhead and maximizing offloading opportuni-
age. However, two key roadblocks currently prevent enties. Furthermore, the controller uses fine-grained com-
terprise adoption of mobile application offloading. pute resource management to multiplex offloads from
1. Privacy and trust: Enterprise applications fre- many devices onto a diverse set of resources. Careful
quently operate on data with strict privacy requirementsjesource assignment guarantees offloading provides the
requiring the use of trusted resources (e.g., servers in agiesired benefit in terms of latency, energy or both.
enterprise data center) for application execution. The Key challenges arise in designing ECOS. First, we

show that securing offloads adds non-trivial latency andconsider the effects of multiple offloads sharing compute

energy overhead. Hence, careful choices must be madesources. In contrast, ECOS uses a central controller
in deciding whether to encrypt communications andto orchestrate all offloads, thus enabling careful resource
whether specific compute resources should be used. Seassignment to ensure many devices with varying goals
ond, because a limited set of diverse compute resourcggnergy savings, latency improvements, etc.) are able to
are shared by a variety of mobile applications with dif- realize benefits from offloading. ECOS also takes ad-

fering performance, energy and privacy requirements, wezantage of the ability to reduce offloading overhead by

must design clever allocation algorithms that adapt to di-caching execution state on a compute resource [10], but
verse application demands and changing resource availt does so in a way that considers resource churn.

ability and ensure handhelds see equitable and substan-

tial benefits. Third, our approach should minimize the3 Privacy and Trust

amount of work handhelds undertake and shift a major- o I
ity of the decision-making to the controller. We describeomoad'ng introduces the possibility for data to leave the

our solutions in Sections 3 and 4. confines of a mobile device without an application’s ex-

We evaluate a prototype of ECOS we developed forpI|C|t ac_tlons. Thus, data privacy, which is paramount in
. . . enterprises, becomes an important concern.
the Android platform [5]. Using two applications repre-

sentative of enterprise workloads, 12 smartphones and u The challgnge in ensuring da‘Fa privqcy is balgncing the
to 6 servers, we measure the benefits ECOS can provi ivacy requirements of enterprises with the ability to of-

in a small enterprise setting where devices have varyin er significant energy and performance benefits from of-

goals and privacy constraints. Performance improves b oading. Sufficient privacy protection means bot) (

as much as 94% and energy savings can be up to 47%. rotecting execution state in transit ara) miting the
compute resources used for offloaded execution. One

way to addressh] is to statically specify the compute

2 Prior Offloading Proposals o L
)) L resources each application trusts [7]. However, this elim-
In offloading, parts of a mobile application are run on 8jnates the ability to adjust compute resource selection

remote compute resource to improve performance, lowef 1sed on the privacy requirements of the current appli-
energy usage, and/or offer higher utility. Many offload- .o jnyocation: e.g., a mobile user may utilize dic-
ing systems have been developed in the past decadgyi,, software to create confidential legal documents,
A_lDE dynam|cglly_part|t|or_1§ mgmory-deman_dmg mo- oy they may use the application to write non-sensitive
bile _Jav.a applications, minimizing the required com- g q1q. Flexibility is also important for addressirg),(
munication between the handheld and the compute rezq 4,0 high overhead of encrypted communication (Sec-

source [14]. Chroma uses developer-specified exeCl,p, 3 1) can significantly reduce offloading benefits.
tion strategies (i.e., tactics) to divide execution of code We seek to identify privacy requirements at a suffi-

modules with varying complexity and accuracy between
local and remote resources [7, 13]. MAUI offloads ciently fine granularity for offloading to be bo#ecure

methods from NET applications to a remote r nt'meand beneficial ECOS can rely on an admin-specified
environment bésed orf)pal h'sltor of ener cozs Im policy to identify privacy requirements for specific ap-
e Istory ot gy u ppIications/users, or ECOS can leverage information flow
tion [10]. CloneCloud uses function inputs and an of-

fline model of runtime costs to dynamically partition ap- tracking [11] for more dynamic decisions (Section 3.2).

plications between a weak device and the cloud, with the .
goal of increasing performance or improving failure re-3-1 ~ Security Overhead
siliency [8, 9]. The simplest way to ensure privacy is to apply strictest-
None of the proposals directly addresses the privacgase security mechanisms to all offloads regardless of the
requirements of offloaded applications. Chroma pro-data involved, e.g., encrypt all offloading communica-
vides some notion of resource trust [7], but with lim- tion. This avoids the complexity and overhead of iden-
ited flexibility (Section 3). Alternative methods of aug- tifying the privacy requirements of an offload, but it can
menting a mobile device’s capabilities require the use ofdecrease offloading benefits and opportunities.
specialized APIs [17, 19] or complex trust establishment We illustrate the potential impact by quantifying the
schemes [16]. ECOS addresses privacy through explicibverhead of always securing execution state in transit.
identification of data privacy levels required by applica- Our measurements use an Android emulator [5] and a
tions and users. These privacy levels are used to makeGHz dual-core desktop running a native x86 version of
dynamic decisions about whether to encrypt offloadingAndroid in a virtual machine [6]. The emulator and VM
communication and which resources to consider using. both run our prototype capable of capturing and loading
Furthermore, existing proposals focus wat and execution state. We offload a single method call which
howto offload from a single mobile device and do not requires transferring a specific amount of execution state.

Retae o Wrecene and users is quite coarse: ideally, an application should
" Mllsen be assigned a privacy level based on the specific data
0 objects it is accessing at a given point in time. To do
087 _ O'SA this, we propose extending ECOS with mechanisms to
00 o 1 4 %7 0 2 3 4 track the flow of private information on the mobile de-
Size (KB) Size (KB)

(a) Unencrypted (b) Encrypted
Figure 1: End-to-end latency overhead

. Send

vice [11]. Data with known privacy requirements—e.g.,
data coming from specific servers, email senders, or file
locations—can be tracked, enabling dynamic knowledge

Figure 1 shows the latency overhead of offloading bothof the data contained in an offload. Given details on

. . : which types of data are involved in an offload, either the
() without and (b) with TLS encryption. 'I_'he Iatency mobile user or our controller can decide which of the
state in transit, translating to a direct reduction in the pe
formance benefits possible with offloading. For exam-
ple, if we transfer 15KB of execution stat@encrypted
execution must be at leaBt3s fasteion the compute re-
source, versus the mobile device, to provide performanc
benefits. Whereas, if we transfer the same 15KB of stat
encrypted execution must be at leaBt8s fasterto re-
alize any performance benefits. Furthermore, overhea§'3 Securing Offload
increases with the size of the transferred state. We dis-

cuss in Section 4.2 how to counter this effect by prefer-,The ECOS central controller uses the privacy level spec-

ring the same compute resource for sequential o1‘f|oadgIcatlon to QQtermlne Wh_at mechanlsrr_]s are reqt_nred to
and caching execution state on the resource. We also offsure sufﬁaent dqta privacy. The privacy required t.)y
serve increases in energy overhead with encryption anwe_ offload is the §tr|cter_ ofthe privacy level of the appll-
with larger state sizes but exclude the results for brevity.C""t'On orthe mobll_e device. The privacy level det_ermmes_
The high overhead of encryption illustrates the impor_(a) whether execution state should be encrypted in transit

tance of applying privacy mechanisisly when needed and) which compute resources can be gsed.
A TLS-encrypted connection is established between

3.2 When to Secure the mobile device and compute resource when the offload
Identifying when to secure in order to ensure privacy re-IS user-private or when the offload ignterprise-private
quires determining the nature of data/state involved irPut the handheld or compute resource is outside the en-
offloading. The data involved in a specific application terprise. All other offloads use unencrypted connections
offload can bmnterprise-private user-private or not- to reduce |atency and energy overhead. The controller in-
private Enterprise-privatedata should not be leaked forms the handheld and resource which connection type
outside the enterprise, e.g., intellectual property sich ato use; the resource only accepts connections of that type.
internal procedure documentdser-privatedata should The compute resources considered for offloading are
only be accessed by the current user of an app|icatior”mited to resources which provide a level of trust at least
e.g., a patient's medical record can only be accessed b§s high as the offload privacy level. For example, a re-
individuals working with the patient, per federal law. ~ mote cloud may only be trusted witiot-privateoffloads,
In our ECOS prototype, we determine the privacy levelan enterprise data center server watfiterprise-private
of an offload based on privacy levels statically assignedffloads, and one’s own desktop witiser-privateof-
to mobile devices and applications by an administratorfloads. The trust level of specific resources is specified
Mobile devices may be classified based on who they beby administrators. Next, we discuss how to select a spe-
long to, e.g., the CEO’s smartphone is user-private or alFific resource from the set of suitably trusted resources.
company-owned devices are enterprise-private. Appli-)
cations are assigned privacy levels based on the stricte§t Resource Sharing and Churn
level of private data they are expected to access (or gerFhe second roadblock addressed by ECOS is supporting
erate). Thus, the assigned privacy levels subsume prsimultaneously offloads from many mobile devices. Ex-
vacy constraints on individual data items and bytes. Anisting systems addresghat andhowto offload from a
application is classified as not-private only if it heso single device [9, 10, 14] but do not consider how mul-
likelihood of accessing private data. Existing enterprisetiplexing offloads from several devices on a single com-
security policies, e.g., access control lists, or devalopepute resource will impact performance and energy ben-
input may aid admins in assigning these privacy levels. efits. Enabling many handheld devices to opportunisti-
We acknowledge that the granularity of applicationscally leverage the diverse compute resources in enter-

low overhead—TaintDroid only imposes 14% overhead
on a CPU-intensive task [11]. The main challenge is de-
ciding what types of data should be tracked and at what
ranularity, e.g., should data from emails be identified by
mail sender, by sender domain, or solely by the fact that
ft came from an email. We leave this as future work.

prise networks requires careful considerationafthbe 4.2 Resource Churn

performance constraints of different users and applicaa key issue in resource sharing pertains to whether the
tions and) the changing availability of resources. A compute resource used for offload should be changed
further complication arises from the fact that we mustduring the course of an application’s execution. Chang-
assign resources without knowing a priori when other aping means that consecutive offloads can leverage differ-
plications will request SpeCifiCtypeS of resources. BeIOW,ent resources, enab“ng fine-grained assignment of re-
we discuss how ECOS addresses these challenges. sources that dynamically adapts to demand and resource
availability over time. However, this eliminates the pos-
4.1 Multiplexing Offloads sibility of cachi_ng execution state at compute resources
and only sending state deltas between subsequent of-
Mobile applications typically offload with a goal of ei- fioads [10], an issue which becomes especially impor-
ther energy savinger performance improvementOf- tant when using encrypted connections (Section 3.1).
floads seeking energy savings are focused on avoidingcos minimizes state transfer overhead by maintaining
battery drain on the mobile device; their goal may be satygsgurce affinityas much as possible: that is, ECOS al-
isfied by any trusted, available compute resource. In CONgyays seeks to offload an application to the same resource
trast, offloads_seeking perf_ormance improvements are foevery time. This allows ECOS to keep a partially loaded
cused on having computation run faster on the offloadingntime environment on the compute resource to quickly
resource than the mobile device; compute resources mugkye future offloads from the same application and de-
be carefully selected such that the resource has sufficieRfqe.
idle computation capacity to satisfy this goal. A perfor- regource affinity relies upon the assigned resource
mance seeking offload is not guaranteed to save devicgaying a constant amount of CPU capacity available dur-
energy, as the energy overhead of state transfer may ey the lifetime of the application, which may not always
ceed the energy savings from reduced CPU usage. pe rye. Other applications/devices which have an affin-
When there are always more suitable compute reity to the same resource may decide to offload at the same
sources (idle desktops, servers, etc.) than mobile agime, causing an over-subscription of CPU resources. Al-
plications desiring offloading, we can use a simple apternatively, a compute resource may no longer be avail-
proach: an application offload is assigned to a dedicategble, e.g. due to a cloud server instance being shutdown.
resource; after offloaded execution completes, a differThere are several options for how to procedd:Deny
ent offload can be assigned to the resource. Dedicating fyture offloads from the mobile device until CPU capac-
resource’s CPU capacity to a single offload ensures peity is available. This only works with resources which
formance seeking offloads achieve some benefit. remain running and only temporarily have insufficient
Unfortunately, this simple approach is of limited use. CPU resources. While simple, it may not adequately
First, we expectin the future there will be orders of mag-leverage alternative idle resources in the network, and
nitude more mobile applications desiring offloading. Theit may prevent a device from offloading for a long pe-
simple approach causes some applications to be deniegtbd. (i) Assign a new compute resource, requiring the
resources, forcing them to run on the mobile device. Secdevice to resend the full execution state. As mentioned
ond, the approach cannot support more complex offload$efore, this could be quite costly in terms of overhead
e.g., parallel offload of different application parts [9]. but still allows offloading to occur, even if the benefits
When there are limited compute resources (e.g., due t8re marginal. i{i) Assign a new compute resource and
trust constraints, reduced resource availability, or & hig have the original resource migrate the state the next time
number of active mobile applications) we assign multiplethe device offloads. This is ideal from the perspective of
offloads to the same resource. ECOS relies on a straighthe mobile device, since it can still send a state delta at
forward scheduling heuristic for pairing offload requeststhe next offload. However, state migration significantly
with resources that are likely to offer the desired benecomplicates the system. The best behavior depends on
fits and guarantees: Performance seeking offloads mu#te characteristics of the network—the number of mo-
be assigned to resources whose unused CPU capacity eile devices desiring offloading, the duration resources
ceeds the CPU speed of the mobile device, otherwise ngemain available, etc. ECOS is flexible enough to be ex-
resource is assigned. Energy seeking offloads can be at&nded with whichever approach is most suitable.
signed to a resource regardless of its CPU capacity, as
we are not concerned with the execution time of these® ECOS Prototype
offloads. However, to avoid an energy seeking offloadWe prototype ECOS using)(Android phones with a
degrading the benefits received by a performance seeknodified Dalvik runtime environmentji] servers run-
ing offload, energy seeking offloads are assigned to rening a modified Android image in a virtual machine, and
sources only with other energy seeking offloads. (iif) a Python-based central controller.

Smartphones run a custom Android image with a
Dalvik runtime environment we modified (4500 LOC)
to support offloading. We instrumented Dalvik to check
at each method invocation if offloading should be trig-
gered* An “offload agent” running on the phone re-
guests a compute resource from the controller; applica-
tion execution proceeds directly on the device if no re-
sources are available. Otherwise, Dalvik establishes a
connection to the compute resource, using encryption
if dictated by the controller, and serializes and sends
all method arguments and any needed objects (deter-,

mined using a mark and sweep algorithm) using cusSize, CPU usage, and memory usage of an actual speech

tom state serialization code, similar to state transfer if €09nizer [3] for 20 recognitions spaced 10s apart.
CloneCloud [9]. When offloaded execution completes, e measure ECOS for a small enterprise setting using
Dalvik integrates the results and any object changes inté Set of Android emulators and servers. Phone emulators
the execution state on the phone, making note of whictf’® used because we only had access to a limited num-
objects are still cached on the compute resource anfe€r Of unlocked Android phones. We confirmed the CPU
keeping the socket connection open for future offloads. frequency was similar (20% faster on the emulator), and
Compute resources run a native x86 version of An-Memory usage was the same, by running both of our ap-
droid, with the same Dalvik modifications, in a Virtu- Plications several times on a real ADP1 phone and in the
alBox [6] VM. Running a version of Android built for emulator. Qur compute resources are 2.4GHz Intel quad
the same architecture as the compute resource is necdi2re machines with 4GB of RAM. Our controller runs
sary to realize code speed-up. A “restore agent” withino" @ Separate machine whose specs are the same. We es-
the Android VM is responsible for accepting socket con-limate power consumption using an energy model [18],
nections from phones, launching new Dalvik instancesWhich tak_es as input the number of packets and bytes
and loading the received execution state. After executiogent/received and CPU usage.
completes, the state is serialized and sent to the phone;
the Dalvik instance remains for subsequent offloads. 6.1 Full System Analysis

The controller (1000 LOC) orchestrates all offloads.\we present an analysis of ECOS for a small enterprise
Capacity information is received from compute re- setting consisting of 12 phones (P1-12) and 4-6 servers
sources and offload requests are received from phone@g,l_s)_ P1-6 run chess and trust all servers; P7-12 run
Using the provided privacy levels policy file, appropri- speech recognition and trust up to 3 servers; P1-3 and
ate resources are assigned and the phones and compgig.g seek performance improvements while the remain-
resources are instructed whether to encrypt ConneCtlonSng phones seek energy Savings_ The constraint of On|y
6 Evaluation havmg 4_ser_vers to serve 12 phones_stresses_ ECOS, but

| ith ¢) we find it still benefits most applications. With lesser
We evaluate ECOS with a range of experiments 10 €sgqvantion when 6 servers are available, the benefits from
tablish the viability of supporting resource-intensive en ECOS become more significant and equitable
terprise applications on handhelds. We study how well '

ECOS () supports enterprise applications with different Performance. The ex_e_cu'uon time (excludmg delay
. . : between moves/recognitions) for each phone is shown
latency, energy, and privacy needs, aijl rhultiplexes

, e in Figure 2. Without offloading, all applications take
offloads and benefits from resource affinity. . . .
: . . approximately 350s to execute. Multiplexing offloads
We use two representative mobile applicatfons Co .
.amongst 4 servers significantly reduces the execution
"Yime to between 22s and 87s for all phones, including

for a compute-intensive Al-based enterprise applicatio . , .
(e.g., non-linear decision-making [1]), and a speech-tor-{hose seeking energy savings, except P10. P10 receives

. : no performance benefit because there is no server it trusts
text transcriber, whose behavior we are forced to emulat(t=h ; . .
due to Android’s lack of some crucial audio libraries at is available to serve offloads seeking energy sav-
..ings. Furthermore, P4-6 have 50-60% higher execution

o o
The chess game plays against itself for 50 moves, Wlﬂlimes than P1-3 although they are running the same ap-

10s delays every other move for user “think time.” The . " L .
. . lication. This is because P4-6 requested energy savings,
mock speech recognition application models the state - .
while P1-3 requested performance improvement.

10 11 12

[0 No Offloading [4 Desktops W 6 Desktops

Figure 2: Comparison of application execution times

1Resource-intensive methods are statically specified, O% Six servers provide enough resources aﬁrphones
could be extended to select methods at runtime, like MAU].[10 o

2Real enterprise mobile applications were unavailable dliegns- to |mpr_0ve performance. Execution tlme IS_ 10-20% less
ing and lack of source code. than with 4 servers because less multiplexing occurs.

300000
250000

s ; H
el | ™)WY ™{ ™ || :
2 4 coooo d LI UL CRD I b e e L - |
i 50000+ I I I I I I I I I I I | PI P2 P3 P4 FSPE P7 P8 P9 PO P11 P
oL LEO O OO O OO0 OO Phanes
P1 P2 P3 P4 P5 P6 PT P8 P9 P10P11 P12 O No Offloading O Multiplexing + B Multiplexing No B Cne-to-Cne +
Phones Affinity Affinity Adfinity

[No Offload [4 Desktops W 6 Desktops

Figure 3: Comparison of application energy usage Figure 4: Comparison of different assignment algorithms

needs, offering significant, equitable benefit at low cost.
Energy. Our experiments show that ECOS also of-)
fers energy benefits in the same offloading scenario (Fig/ ~Conclusion
ure 3). The energy savings ranges from 24% to 44% withVe presented ECOS, an Enterprise-Centric Offloading
4 servers and 23% and 47% with 6 servers. Again with 4System designed to address the security needs of mo-
servers, resources are constrained and ECOS is unablelde applications and opportunistically leverage avdéab
provide benefits to P10. Increasing the available serveréompute resources. ECOS extends the offloading deci-
allows P10 to attain energy savings equal to its peers. sion process to take into account privacy requirements
Although not present here, ECOS may impose energynd costs. In ECOS an enterprise-wide controller assigns
costs for applications that have requested performancéusted compute resources to applications based on re-
improvements. Likewise, some applications seeking ensource availability, administrator specified securityipol
ergy savings may see a degradation in performance whegi€s, and the performance or energy savings goals of mo-
there is high resource contention. Since ECOS is oppordile devices. We showed that ECOS provides both la-
tunistic, the presence of this cost is workload dependentency and energy benefits, even in the presence of strict
_ o privacy requirements and few compute resources, paving
6.2 Resource Allocation Efficiency the way for wider-spread adoption of offloading to assist
We now evaluate how well ECOS shares resourcesurrent and future enterprise mobile applications.
amongst many mobile devices. Using the 12 phone,
g ¢ yb g ¢ P References
Ser_/er selup above, we co_mpar.e a Qne' O'On.e resourc] Alenters the mainstrearhit t p: / / domai n- b. coni i nf ot ech/
assignment strategy to multiplexing with and without re- 2 i t(fjeaé ur e/ 20070430.l nt el Ibi_lger;]ce. hé m .
s : : : Android enterprise security: Mobile phone data prdtectad-
source_afﬂ_nlty. The execution tme for each phqne IS “7 Vice. htt p: // sear chsecuri t y. t echt ar get . com
shown in Figure 4 for the three assignment scenarios. [‘3& SMUISp_hinx. http:_//crruls_ph_i nx.fsourct;e_lf or ge. net.
H H H eveloping enterpnse app ications for mobile devicemains
First, we (_)bserve that Qpe-to-ong aSS|gnment. reSl_JIts int way too hardht t p: / / ww. zdnet . cont bl og/ gar dner .
less offloading opportunities and higher execution times % 800§|;Ie andr(l)tle.htht p:/ //z;mdr oi d. comI)
H racle virtualbox. ttp: WWW. Vi rtua 0x. org.
for tWQ-thII’dS of the phones. _II’I some cases, _e'g" F)2'[7] R. K. Balan et al. Tactics-based remote execution for irrob
execution takes more than twice as long. This results[g] conéplgirr]lg- lni\/(ljobiSys 2003. call ftioningp
. o B.-G. un and P. Maniatis. Dynamically partitioningpéipa-
from the inability to serve more tha_n 4 offloads (as many ™ fons between weak devices and cloudsM@s 2010.
servers as we have) at any given time. At the same time [9] Ig.-C_;. Chug elt ali ?Enecslouczko fllastic execution betwewbile
: H H H evice and cloud. urosys .
a given offload typically takes less t'me_ to execute sinc 10] E. Cuervo et al. MAUI: Making Smartphones Last Longettwi
compute resources are not shared with other ofﬂoadsi: | \(l:vodEe oljfloadl. I_lr!\/IpbéSy% 2010. f o y
; . Enck et al. Taintdroid: an information-flow traci |r$gstem
€.g. P10 executes the fastest W'th one-to-one because :Itl for realtime privacy monitoring on smartphones.QsD|, 2010.
gets full use of the CPU when assigned to a server. [12] |5. Fie_hing afntlifK. tl))ul_ane;;.s iPads: Notzre)otgbook replaeets,
ut still useful for businessGartner, Inc, 2010.
S_econd' We. Obs‘?er that for_ most phones, reso_urc&a J. Flinn et al. Balancing performance, energy, andituil per-
assignment with affinity results in lower total execution 4 xaslol/e compttltlr}g-gCDCds 20(?2} buted blatiorm ¢
: H H H . Messer et al. owaras a daistrioputed platform 1or rase-
time. This decrease stems directly from the decrease ift constrained devices. KEDCS 2002. . _
state transfer as a result of preserving execution state &t5] S.D. Nc?lson and D. A. WI"[%» Separ?tlngzgﬂerpnsdeahpph-
Ho : cations from consumer app&artner, Inc, .
.the Sam? server, similar to_ MAUI [10] However, avouj— 16] M. Satyanarayanan et al. The case for vm-based clautieho-
ing affinity can help provide a fair sharer of benefits - gllesconlﬁgutmg-{EIIEELPervaSI_ve ComptuﬂE@OOE?-t ducdiitgob
R . . omalaone et al. Leveraging smart pnones (o reaucelityo
when the number of compute resources are limited: €.9:"" footprints. InMobiSys 2009, o -
P10 receives significant benefit when using multiplexing[18] L. Zhang et al. Accurate online power estimation andematic
without affinity as there is more churn in assignments Fnag%%g‘;ﬁ?‘ggggigf power rT'Ode' f’en?rat'on for Srf'a."mho
and a greater opportunity for being allocated resources.[19] X. Zhang et al. Securing elastic applications on mobiégices
In summary, we find that ECOS can support multi- fzoorocgl)(.)ud computing. InWorkshop on Cloud computing secuyity

ple applications with different performance and security

