
Design and Implementation of a Framework
for Software-Defined Middlebox Networking

Aaron Gember, Robert Grandl, Junaid Khalid, Aditya Akella
{agember,rgrandl,junaid,akella}@cs.wisc.edu

Virtual middleboxes are becoming increasingly attractive because of the flexibility
and agility they enable. Several frameworks (e.g., Stratos, SIMPLE) have been
developed for managing the composition and provisioning of virtual middlebox.

However, control over how middleboxes examine and modify network traffic is
limited: policies and parameters are manipulated using narrow, middlebox-specific
interfaces, while internal algorithms and state are completely inaccessible and
unmodifiable. A lack of fine-grained control over middleboxes and their state
precludes correct and well performing implementation of control scenarios that
involve re-allocating live flows across middleboxes: e.g., horizontal scaling.

MOTIVATION

NORTHBOUND API

EVALUATION

Internal State Control

MIDDLEBOX STATE TAXONOMY

Role Definition IPS Examples Partitioning Operations

Configuration
Defines and tunes

middlebox behavior
Rules,

alert level
Shared only

Middlebox
reads

Supporting
Guides middlebox

decisions and actions
based on past traffic

Connection
records

Per-flow &
shared

Middlebox
reads &
writes

Reporting
Quantify observations

and decisions
Packet counters,

alert logs
Per-flow &

shared
Middlebox

writes

SOUTHBOUND API
Application Interface
• Simplifies control applications by hiding

complex details of get/put/delete, events, etc.
• Enables independent middlebox evolution

moveInternal(<Src>,<Dst>,<HdrFieldList>)
cloneSupport(<Src>,<Dst>)
mergeInternal(<Src>,<Dst>)

State Interface
• Desire to conceal state structure and protect its integrity
• Need to move, clone, and merge state at fine granularity

State Events
• Need to ensure state changes (e.g. move) are atomic
• Type of events: Packet re-process, Packet re-direct

getSupport (<HeaderFieldList>)
putSupport ([<HeaderFieldList>:<EncryptedChunk>])
delSupport (<HeaderFieldList>)

SDMBN ARCHITECTURE

1) High-level operation to move state
2) Controller issues a get request
3) Send the requested state
4) Insert the state

5) Issue reprocessing event to ensure
atomic state change

6) Reprocess packet to update state
7) Update the route
8) Remove moved state

POTENTIAL SOLUTIONS

Implemented live migration and
scaling control applications on
top of northbound API

Modified Bro, PRADS, and SmartRE
to support southbound API

Our taxonomy highlights commonalities that can
be leveraged to design control interfaces

Middlebox Without
operation

During get
operation

Bro 6.93ms 7.06ms

Smart RE 0.781ms 0.790ms

Average per-packet processing latency

Controller handles operations efficiently and is scalable

Middleboxes maintain performance during
operations and implement operations efficiently

Configuration Control

Standardized configuration protocols (e.g., SIMCO, SNMP) – only provides
control over externally-created state, not middlebox-created state

Control over middlebox configuration and routing [2] – enables an
optimal configuration of middleboxes and the network, but the new
configuration cannot fully take affect until all existing flows have finished

Virtual machine snapshot – clones more state than necessary, possibly
leading to incorrect middlebox behavior; does not support merging

Vendor-provided controller – vendors can transfer state between
middleboxes based on detailed knowledge of middlebox internals, but the
controller’s state decisions may conflict with network-wide objectives

Application-level library [1] – middleboxes call the library to allocate, free,
and access state, and a controller calls the library to import/export state;
limited support for state that is shared across flows

DEMONSTRATION

Mbox

Mbox

Apache

Apache

Client

1. Send copies of flows for both
servers to the same middlebox

2. When network load increases,
move state and flows for one
server to a new middlebox

3. When load decreases, move
state and flows back to the
original middlebox

Observe that the middlebox’s output is
equivalent to using a single middlebox

LEARN MORE

http://agember.com/go/OpenMB

REFERENCES

[1] S. Rajagopalan, D. Williams, H. Jamjoom, and A.
Warfield. Split/merge: System support for elastic
execution in virtual middleboxes. In NSDI, 2013.

[2] V. Sekar, R. Krishnaswamy, A. Gupta, and M. K.
Reiter. Network-wide deployment of intrusion
detection and prevention systems. In CoNEXT, 2010.

