Poster: Identifying Syntactic Motifs and Errors in
Router Configurations Using Graphs

Sara Alam
Colgate University
salam@colgate.edu

Abstract—Router configurations are complex, so misconfigura-
tions are common and hard to pinpoint. Existing configuration
verifiers have several drawbacks. Consequently, we design a three
stage heuristic to represent a wide range of components and
relationships from a network’s raw configurations as a graph,
and we infer which of the aforementioned components refer to
each other often by finding cycles in the graph. Deviations from
frequently occurring cycles are considered misconfigurations.

I. INTRODUCTION

Router configurations are notoriously complex. For exam-
ple, routers in enterprise campus networks are often configured
with multiple interfaces, routing protocols, access control list
(ACLs), virtual local area networks (VLANSs), and more [1].
Furthermore, configurations often contain numerous references
between these components: e.g., interfaces participate in spe-
cific VLANs, VLANSs apply specific ACLs, etc. [2]. Conse-
quently, misconfigurations are common and hard to pinpoint.

Fortunately, researchers have developed two types of tools
to detect router misconfigurations. Policy-checking tools (e.g.,
[3]-[6]) build models which encode a network’s configura-
tions and route computation algorithms and include model-
specific analysis algorithms to check if predefined forwarding
requirements are met. However, it is difficult to fully and
accurately model the semantics of a network’s configurations
and route computation algorithms; even production-quality
policy-checking tools contain errors [7]. Furthermore, policy-
checking tools require a network’s forwarding requirements to
be specified, but requirements are rarely explicitly documented
and tools for inferring requirements from configurations [8]
may generate incomplete or inaccurate requirements [9].

Consistency-checking tools (e.g., [10]-[12]) check for de-
viations from recurring syntactic motifs to identify misconfig-
urations. By analyzing configurations’ syntax instead of their
semantics, consistency-checking tools eliminate the complex
tasks of modeling the network’s behavior and specifying a
network’s forwarding policies. However, existing consistency-
checking tools focus on a narrow range of configuration
components and relationships—e.g. only ACLs [12] or only
BGP-related components [10]—causing these tools to overlook
other syntactic motifs and corresponding misconfigurations.

Our goal is to design a consistency-checking tool which
efficiently considers the full range of components and relation-
ships present in the configurations of real networks. We make

978-1-6654-8234-9/22/$31.00 ©2022 IEEE

Devon Lee
Colgate University
dslee@colgate.edu

Aaron Gember-Jacobson
Colgate University
agemberjacobson @colgate.edu

1 hostname: case

2 interfaces: {

3 GEl: {

4 allowed—-vlans: [100, 200],

5 description: “Student workspace” }
6 GE2: {

7 allowed-vlans: [100, 200],

8 description: ”Student lounge” }
9 3,

10 acls: {

11 a: [

12 remark ”Student wireless”,

13 permit 10.0.20.0/24]

14 1}

15 wvlans: {

16 100: {

17 inbound-acl: a },

18 200: {

19 inbound-acl: a }

20 }

Fig. 1. Example configuration file

two significant contributions toward this goal. First, we design
a three stage heuristic to infer a wide range of components
and relationships from a network’s raw configurations. We
represent these components and their relationships as a graph,
G. Second, we design a technique for efficiently analyzing
G to identify misconfigurations. In particular, we infer which
of the aforementioned components refer to each other often
by finding cycles in G. Deviations from frequently occurring
cycles are considered misconfigurations.

In the rest of this abstract, we describe our approach in more
detail (Section II) and present our preliminary findings for a
small university campus network (Section III).

II. OUR APPROACH
A. Building G

We design a three-step heuristic to convert raw configura-
tions into an easily-analyzable structure. First, we extract con-
figuration components (e.g., interfaces, ACLs, and VLANSs)
from a JSON representation of a networks’ configurations by
inferring whether the “key” at a particular level of indentation
is a “type” of component or the “name” of a specific com-
ponent. We leverage the fact that components of the same
type typically have overlapping attributes and components
of different types have distinct attributes. For example,
in the configuration in Figure 1, interfaces and VLANs are
identified as separate types of components because of their

Case_GEl

Dining Vlan100

ACL_a

Student

Vvlan200
Coop_GE4

Vlan300
Mcg_GE5

Fig. 2. An example graph with nodes of type interface (orange), VLAN
(blue), ACL (gray) and keyword (pink)

different attributes—allowed-vlans and description
versus inbound-acl—and GE1 and GE2 are identified as
names of interfaces. Unlike prior consistency-checking tools,
we explicitly include components with no semantic impact
(e.g., interface descriptions), because they provide useful in-
sights into a network’s configurations (e.g., interfaces with the
same role may have the same keyword in their description).

Second, we check which pairs of components refer to
one another at least once by looking for the names of one
component within the details of another. For example, in
Figure 1, interface GEI refers to VLAN 100.

Third, we create a graph G, which contains a node for
every name of every type of component extracted and an
edge between every pair of names which refer to each other.
Our approach is more holistic compared to existing policy-
and consistency-checking tools, because we include all the
components mentioned in the configurations files.

B. Analyzing G

A multi-component relationship can be viewed as a series
of edges in G that ties a set of nodes together. In other words,
common ways that components are grouped together in a given
network can be characterized as cycles in G. Cycles that appear
most often are identified as network specific patterns. Instances
of these patterns where the cycle-completing edge is missing
are flagged as possible misconfigurations.

To find cycles, we pick a specific “anchor” type and cycle
length (k). We use Breadth First Search to enumerate all k-
length paths starting from each instance of the anchor type.
The paths which lead back to the starting nodes with one
additional edge are full cycles; the rest are partial cycles. We
group paths which have the same “signature”—i.e., sequence
of node types and/or names—and compute a ‘“‘confidence”
ratio: Num full cycles / (Num partial cycles + Num full cycles).

For example, starting from interface (orange) nodes in
Figure 2 there are ten paths with the signature “interface —
Student — ACL_a — VLAN”. One of the paths (Mcg_GES5
— Student — ACL_a — Vl1an200) is a partial cycle and the
rest are full cycles, so the confidence is 90%. If the confidence
is 100%, the cycle is a recurring motif, but there are no associ-
ated misconfigurations. If the confidence is low or the number
of partial cycles is high, then the deviations highlighted occur
often, and it is unlikely to be a misconfiguration. We have
observed that cycles with confidence between 90% and 100%
exclusive, with the number of partial cycles below 100, are the

best at highlighting misconfigurations without flagging correct
configuration components.

An important aspect of cycle-finding is that a mix of names
and types must be used to define each signature. Consider all-
name and all-type signatures as two possible extremes. Every
node in an all-name signature is unique, so this path will only
appear once and not form a recurring pattern: e.g., Case_GEl1
— VIan100 — Frank GE3 — Student — Case_GEIl in
Figure 2. In contrast, all-type paths (e.g., interface — keyword
— acl — vlan) are often too general to frequently form full
cycles and capture meaningful patterns. Thus, we consider
signatures with a combination of names and types.

III. PRELIMINARY RESULTS & FUTURE WORK

We have implemented a prototype of our approach in Python
and evaluated it using configurations from a small university
campus network. In particular, we looked for 3- and 4-node cy-
cles with interface nodes as anchors. Most of the 3-node cycles
in this network did not uncover any misconfigurations. Our
tool found 128 4-node cycles with confidence between 90%
and 100% exclusive. Network engineers have confirmed that
all of the anomalies found are either actual misconfigurations
or exceptions which are beneficial to track. The time taken to
discover paths grows linearly with the number of anchor nodes
and superlinearly with the number of relationships between
nodes. However, path discovery can be easily parallelized,
allowing our approach to scale to larger networks.

In the future, we plan to generalize our analysis algorithm
to: i) Identify a suitable maximum cycle length (n) for a
network; ii) Find types that give the most relevant cycles when
used as anchors; iii) Enumerate and evaluate all possible k-
node cycles using the set of types for all k such that 3 < k < n.

REFERENCES

[1] D. A. Maltz, G. G. Xie, J. Zhan, H. Zhang, G. Hjdlmtysson, and A. G.
Greenberg, “Routing design in operational networks: a look from the
inside,” in ACM SIGCOMM, 2004.

[2] T. Benson, A. Akella, and D. Maltz, “Unraveling the complexity of
network management,” in USNEIX NSDI, 2009.

[3] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “A general approach
to network configuration verification,” in ACM SIGCOMM, 2017.

[4] A. Abhashkumar, A. Gember-Jacobson, and A. Akella, “Tiramisu: Fast
multilayer network verification,” in USENIX NSDI, 2020.

[5] S. Prabhu, K.-Y. Chou, A. Kheradmand, B. Godfrey, and M. Caesar,
“Plankton: Scalable network configuration verification through model
checking,” in USENIX NSDI, 2019.

[6] P. Zhang, D. Wang, and A. Gember-Jacobson, “Symbolic router execu-
tion,” in ACM SIGCOMM, 2022.

[7]1 F. Ye, D. Yu, E. Zhai, H. H. Liu, B. Tian, Q. Ye, C. Wang, X. Wu, T. Guo,
C. Jin et al., “Accuracy, scalability, coverage: A practical configuration
verifier on a global WAN,” in ACM SIGCOMM, 2020.

[8] R. Birkner, D. Drachsler-Cohen, L. Vanbever, and M. Vechev, “Con-
fig2Spec: Mining network specifications from network configurations,”
in USENIX NSDI, 2020.

[9]1 A. Kheradmand, “Automatic inference of high-level network intents by

mining forwarding patterns,” in ACM SOSR, 2020.

N. Feamster and H. Balakrishnan, “Detecting BGP configuration faults

with static analysis,” in USENIX NSDI, 2005.

F. Le, S. Lee, T. Wong, H. S. Kim, and D. Newcomb, “Detecting

network-wide and router-specific misconfigurations through data min-

ing,” IEEE/ACM Trans. Netw., vol. 17, no. 1, pp. 66-79, 2009.

S. K. R. K., A. Tang, R. Beckett, K. Jayaraman, T. D. Millstein, Y. Tamir,

and G. Varghese, “Finding network misconfigurations by automatic

template inference,” in USENIX NSDI, 2020.

[10]

(11]

[12]

