
Testing Router Command Line Interfaces
Omshi Samal
Colgate University
osamal@colgate.edu

Aaron Gember-Jacobson
Colgate University

agemberjacobson@colgate.edu

ABSTRACT
Router software is prone to bugs triggered by commands en-
tered in the command line interface (CLI). In particular, over
two-thirds of the CLI-triggered bugs in FreeRangeRouting
(FRR) occur due to interactions between a pair of commands.
Consequently, we propose a router CLI testing framework
based on combinatorial testing. Applying our prototype to
FRR’s access-list commands takes less than a minute, and
uncovered a bug that has been confirmed by the developers.

1 INTRODUCTION
Router software tends to be highly complex due to the in-
tricate nature of distributed routing protocols and extensive
flexibility offered by router configuration languages. For
example, FreeRangeRouting (FRR) [3]—a widely-used open-
source routing software suite for Linux/Unix platforms—has
≈600K lines of C code. Furthermore, there are >300 million
possible commands that can be entered in the FRR command
line interface (CLI) in configuration mode—which doesn’t
even account for nested configuration commands (e.g., com-
mands entered after a "router bgp" command) or possible
command parameter values (e.g., IP addresses).

This complexity makes router software prone to bugs. In
particular, Yin et al.’s study of bug reports from four router
software suites found the two most common triggers of bugs
are configuration changes and CLI commands, triggering
63% and 52% of bugs, respectively [14]. Furthermore, ap-
proximately half of the lines of code in router software are
associated with router management interfaces, including
parsing configurations, the CLI, and logging.
Our own study of bugs in FRR corroborate these find-

ings. We manually studied 162 FRR issues which were re-
ported in the years 2017 through 2020. From these issues,
we identified 67 issues that were triggered by configura-
tion commands. We categorized these issues based on the
command name (e.g., access-list, route-map), action (e.g.,
addition, deletion, replacement), and faulty behavior (e.g.,
incorrect deletion, duplication, crash). The most frequent
triggers were "router bgp" sub-commands—e.g., neighbor
and address-family commands—and access-list com-
mands. Moreover, over two-thirds of the issues triggered by
configuration commands occurred due to interactions be-
tween a pair of commands. For example, running a command
to add an access control list (ACL) rule

access-list 1 seq 10 permit any

followed by a command to modify the rule
access-list 1 seq 10 deny 7.0.0.1/32

incorrectly results in the ACL containing both rules [1]
access-list 1 seq 10 permit any
access-list 1 seq 10 deny 7.0.0.1/32

Although numerous tools have been developed to detect
errors in router configurations (e.g., [4, 5, 12]), no tools have
been designed to assess whether the configuration com-
mands are properly processed by the router software. Re-
searchers have developed general-purpose testing tools for
configurable systems (e.g., [8, 9, 13]), but (to the best of our
knowledge) these have not been applied to router software.
Instead, router software developers rely on simulation [2, 11],
fuzzing [2], and symbolic execution [7] to detect bugs.

We aim to close this gap through the design of a thorough
and efficient testing framework for router CLIs. Based on our
aforementioned observation that over two-thirds of the FRR
issues triggered by configuration commands occurred due to
interactions between a pair of commands, our preliminary
design (Section 2) is based on combinatorial testing [6, 10].
Applying our framework to FRR’s access-list commands
takes less than a minute, and we uncovered a bug in FRR’s
CLI that has been confirmed by the developers (Section 3).

2 APPROACH
Our approach to detect CLI bugs is pairwise testing of com-
mands generated using combinatorial testing. Combinatorial
testing avoids the scalability and coverage limitations of cur-
rent router software testing approaches, and aligns with our
observation that many router CLI bugs are triggered by pairs
of commands (Section 1).
Router configurations contained nested (ordered) sets of

commands. At each level of nesting, there are a certain num-
ber of valid commands that can be entered. Most router CLIs
provide an easy way to list the allowable commands in a
templated form. For example, one of the access-list com-
mands supported by FRR is

access-list WORD [seq (1-4294967295)]
<deny|permit> <A.B.C.D/M [exact-match]|any>

where "[seq (1-4294967295)]" is an optional command pa-
rameter and "<A.B.C.D/M [exact-match]|any>" and
"<deny|permit>" are required parameters. Furthermore, the

1

N2Women’22, August 2022, Amsterdam, Netherlands Omshi Samal and Aaron Gember-Jacobson

latter is a few-valued parameter, whereas the former param-
eters are many-valued parameters.
Having templates with command parameters allows us

generate a set of valid commands using combinatorial testing.
We do this at each level of configuration nesting for every
command-template, giving us a set of commands which we
can then test pairwise by entering them at the CLI. For many-
valued parameters, such as sequence numbers and IP ad-
dresses, the number of possibilities is massive. Consequently,
we focus on critical boundary values—e.g., 0.0.0.0/0,
10.0.0.0/16—as well as adjacent/overlapping values—e.g.,
1.0.0.0/8 and 2.0.0.0/8, or 1.0.0.0/8 and 1.2.0.0/16.

We must also address the challenge of determining if a
certain pair of commands triggered a bug. Since many bugs
result in normal operation of the router [14], and we are
trying to detect bugs triggered by entering configuration
commands at the CLI, we adopt the simple approach of
comparing the running configuration of the router, as re-
ported by the CLI (e.g., "show running-config"), with the
expected configuration after entering the commands. How-
ever, router software typically adds default values for ex-
cluded optional parameter—e.g., the next unused sequence
number in an access-list—and transforms values to a stan-
dard form—e.g., FRR transforms "1.2.3.4/16" to "1.2.0.0
255.255.0.0". Consequently, the commands in the running
configuration may not match the commands entered in the
CLI. To address this issue, we ignore optional parameters and
convert IP addresses to a canonical form when comparing
the running configuration with the entered commands.

Although we have found this approach is effective for de-
tecting bugs (Section 3), there may be a mismatch between
the running configuration reported by the router and the
router’s internal state, leading to missed/false bugs. More
sophisticated analysis of commands’ impact on routers’ inter-
nal state is an important part of our future work (Section 4).

3 PRELIMINARY RESULTS
We have implemented a prototype of our testing frame-
work in ≈450 lines of Python code, and applied it to FRR’s
access-list configuration commands, since this category
of commands was one of the most frequent triggers of bugs
in FRR (Section 1).

FRR has three access-list command templates:

access-list WORD [seq (1-4294967295)]
<deny|permit> <A.B.C.D/M [exact-match]|any>
access-list WORD [seq (1-4294967295)]
<deny|permit> <[host] A.B.C.D|A.B.C.D A.B.C.D>
access-list WORD [seq (1-4294967295)]
<deny|permit> ip <A.B.C.D A.B.C.D|host A.B.C.D|
any> <A.B.C.D A.B.C.D|host A.B.C.D|any>

We generated a set of 13530 valid access-list commands
from these templates using combinatorial testing. After pair-
wise testing the set of generated commands, we found one
bug which affects interactions between 294 pairs of access-
list commands. The bug causes the incorrect modification of
access-list commands where the old and the new forms of the
command differ by the presence of an IP host address. The
entire process from command-generation to testing for ex-
pected output took about 50 seconds, with the primary time
sink being the entering and processing of commands in the
CLI. Without combinatorial testing, we would have needed
to check 339076 pairs of commands—and significantly more
if we considered all possible network addresses and masks.

4 FUTUREWORK
For immediate future work, we will focus on extending
our code to apply to other configuration commands (e.g.,
route-map, (bgp) neighbor). Furthermore, we will investi-
gate other ways to detect a bug, especially in scenarios where
the running configuration matches the expected configura-
tion but the router has incorrect behavior. This includes
examining other representations of the internal state of the
router (e.g., ‘show ip route‘) or sending probe-packets and
comparing router behavior against expected behavior. Lastly,
we will apply our tool on different routing software suites
to demonstrate its generality, efficiency, and accuracy.

REFERENCES
[1] [n.d.]. Access-lists: change in behavior for sequence numbers and crash

on delete - Issue #6747 - FRRouting. https://github.com/FRRouting/
frr/issues/6747.

[2] [n.d.]. FRRouting Developer’s Guide. https://docs.frrouting.org/
projects/dev-guide.

[3] [n.d.]. FRRouting Project. https://frrouting.org.
[4] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya

Akella. 2020. Tiramisu: Fast Multilayer Network Verification. In
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI).

[5] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017.
A General Approach to Network Configuration Verification. In SIG-
COMM.

[6] David M. Cohen, Siddhartha R. Dalal, Michael L. Fredman, and Gard-
ner C. Patton. 1997. The AETG System: An Approach to Testing Based
on Combinatiorial Design. IEEE Trans. Software Eng. 23, 7 (1997).

[7] Mihai Dobrescu and Katerina J. Argyraki. 2014. Software Dataplane
Verification. In 11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI).

[8] Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein,
Patrick Heymans, and Yves Le Traon. 2014. Bypassing the Combina-
torial Explosion: Using Similarity to Generate and Prioritize T-Wise
Test Configurations for Software Product Lines. IEEE Trans. Software
Eng. 40, 7 (2014), 650–670.

[9] Chang Hwan Peter Kim, Darko Marinov, Sarfraz Khurshid, Don S.
Batory, Sabrina Souto, Paulo Barros, and Marcelo d’Amorim. 2013.
SPLat: lightweight dynamic analysis for reducing combinatorics in

2

https://github.com/FRRouting/frr/issues/6747
https://github.com/FRRouting/frr/issues/6747
https://docs.frrouting.org/projects/dev-guide
https://docs.frrouting.org/projects/dev-guide
https://frrouting.org

Testing Router Command Line Interfaces N2Women’22, August 2022, Amsterdam, Netherlands

testing configurable systems. In Joint Meeting of the European Soft-
ware Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, (ESEC/FSE).

[10] D. Richard Kuhn, Dolores R. Wallace, and Albert M. Gallo. 2004. Soft-
ware Fault Interactions and Implications for Software Testing. IEEE
Trans. Software Eng. 30, 6 (2004), 418–421.

[11] Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye, Jiaxin Cao, Sri Tallapra-
gada, Nuno P. Lopes, Andrey Rybalchenko, Guohan Lu, and Lihua
Yuan. 2017. CrystalNet: Faithfully Emulating Large Production Net-
works. In 26th Symposium on Operating Systems Principles (SOSP).

[12] Siva Kesava Reddy, Alan Tang, Ryan Beckett, Karthick Jayaraman,
Todd D. Millstein, Yuval Tamir, and George Varghese. 2020. Find-
ing Network Misconfigurations by Automatic Template Inference. In
USENIX Symposium on Networked Systems Design and Implementation
(NSDI).

[13] Xudong Sun, Runxiang Cheng, Jianyan Chen, Elaine Ang, Owolabi
Legunsen, and Tianyin Xu. 2020. Testing Configuration Changes in
Context to Prevent Production Failures. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI).

[14] Zuoning Yin, Matthew Caesar, and Yuanyuan Zhou. 2010. Towards
understanding bugs in open source router software. Comput. Commun.
Rev. 40, 3 (2010).

3

	Abstract
	1 Introduction
	2 Approach
	3 Preliminary results
	4 Future work
	References

