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I. INTRODUCTION

Researchers have developed numerous tools for detecting
errors in network configurations. Many tools construct a model
of a network’s control plane—based on configurations, routing
protocol standards, and vendor documentation—and check
whether the model conforms to operator-specified forward-
ing policies—e.g., reachability and waypointing requirements.
However, designing the model and enumerating a set of poli-
cies to check are both complex and error-prone tasks [2, 3].1

A few error detection tools have avoided these issues by
focusing on the content and structure of the configurations
themselves. For example, rcc [5] checks whether BGP con-
figurations conform to common best practices, Minerals [7]
infers association rules for interface and BGP configurations,
and SelfStarter [6] infers templates for packet and route filters.
The latter two embrace the “outliers are bugs” philosophy [4],
and flag deviations from rules or templates as errors.

Based on our examinations of numerous networks’ config-
urations, arduous attempts to mine networks’ specifications,
and conversations with network engineers, we wholeheartedly
support applying the “outliers are bugs” philosophy to network
configurations. However, we have discovered that network
configurations contain even more subtle patterns than these
prior works [6, 7] elucidate.

In this talk, we present illustrative examples of the subtle
patterns embedded in network configurations, and we discuss
our efforts to automatically detect (deviations from) these
patterns using contrast set learning and link prediction.

II. SUBTLE CONFIGURATION PATTERNS

Through copious manual examination of the configurations
from seven campus networks and two research & education
(R&E) networks, we have uncovered three classes of subtle
configuration patterns that are overlooked by prior works [6,
7]. The first half of our talk describes each class of patterns and
provides illustrative examples drawn from the configurations
of three different networks—although such patterns occur in
many of the networks we examined.
Keywords. We first observe patterns in the “human readable”
names and descriptions in configurations. For example, one
network allocates a network management VLAN for each
building, and includes the keyword ”management” in the
description of such VLANs. All devices with such VLANs
also contain an ACL whose description contains the same

1Mined specifications may be incorrect due to configuration errors.

keyword; this ACL is applied to (almost) all VLANs with the
keyword and no VLANs without the keyword. Furthermore,
the keyword does not appear in the names/descriptions of any
other ACLs or categories of VLANs. Hence, this keyword can
be used to discern whether a specific ACL is applied to the
appropriate VLANs.

Reference counts. Benson et al. introduced the idea of inter-
and intra-device configuration references [1]: e.g., the applica-
tion of an ACL to a VLAN creates an intra-device reference
from the VLAN to the ACL. We observe that the frequency
of references to certain entities indicates the entity’s role and
the way in which we expect it to be used. For example, in
one network, the layer-3 links between core and distribution
routers are each assigned a unique VLAN. Each VLAN is only
allowed on the two interfaces that physically connect a pair of
routers. In contrast, all other VLANs are allowed on several
interfaces: e.g., a department’s VLAN is allowed on interfaces
that connect to department switches as well as physically
connected interfaces on core and distribution routers. Further-
more, OSPF is only active on the aforementioned category of
VLANs. Hence, the number of interfaces that refer to a VLAN
can be used to discern whether the VLAN should run OSPF.

Mutual references. We also observe patterns based on the
presence of mutual references. For example, one network
defines a unique ACL for each VLAN containing end hosts.
The ACL only accepts packets whose source IP address falls
within the subnet assigned to the VLAN, in order to prevent
source spoofing. Thus, there is a reference from the VLAN to
the ACL, and both the ACL and the VLAN have a reference to
the same subnet. Hence, if we observe a VLAN that references
an ACL, but the VLAN and the ACL do not refer to the same
subnet, then we have detected an error. This class of patterns
is similar to the notion of ”mutual friends” in a social network.

These illustrative examples suggest there are likely other
subtle patterns embedded in configurations, and uncovering
these classes of patterns through manual and/or automated
analysis is part of our ongoing work.

III. PATTERN MINING

The second half of our talk discusses the techniques we are
developing to detect patterns such as those mentioned in the
first half of the talk. Our efforts our focused on two pattern
mining techniques: contrast set learning are link prediction.

Contrast Set Learning (CSL). CSL is a form of association
rule mining which attempts to identify meaningful differences



between separate groups. These differences can take the form
of a variety of identifying attributes present in networks: e.g.
subnet addresses, keywords, types/names of ACLs applied, etc.
The guiding principle behind CSL is that a group of these
attributes adjusted to the right threshold can help distinguish
between different groups of entities. For example, the inclusion
of the keyword ”management” in a VLAN’s description is a
meaningful difference between VLANs that have a specific
ACL applied versus those that do not. Any deviations from
this rule—e.g., a VLAN with the keyword in its description
but no ACL applied—can be flagged as potential errors.

The main challenges in CSL is identifying meaningful
rules. Our implementation of CSL automatically ranks rules
based on precision and recall, but two rules with the same
precision and recall may not be equally meaningfully. For
example, a rule based on a specific VLAN’s subnet address is
less meaningful than a rule based on keyword which applies
to multiple VLANs. An additional challenge is determining
which features to extract from configurations. Currently, we
are “hand-engineering” features based on domain knowledge,
but we plan to investigate ways to automatically extract
configuration features—e.g., based on embeddings [8].

Link prediction. This method represents a router configura-
tion as a graph, where different types of nodes represent dif-
ferent configuration components, and links define relationships
between components [1]. For example, given VLAN 10 with
the ACL 2 applied, our graph would contain an VLAN node
representing VLAN 10 with a link labeled “out” to an ACL
node representing ACL 2.

We predict missing links based on node similarity. Similar
to friend suggestion algorithms used by social media networks,
we calculate the similarity of two nodes as a weighted average
of the number of neighbors they have in common, with the
percent similarity of each type of node (i.e. interface, VLAN,
subnet, ACL) weighted according to a hyperparameter. The
computed similarity of two nodes is compared against a
threshold (another hyperparamter), and if nodes are sufficiently
similar, we predict links should be added to all neighbors of
one node that are not neighbors of the other. For example, if
two VLANs have all of the same keywords, but one VLAN
applies an ACL that the other does not, then we predict a link
should be added from the other VLAN to the ACL.

The primary challenges with this approach are: tuning the
hyperparameters, generating suggestions for missing links for
node pairs with low similarity, and predicting links to remove.
We are currently working on solving these challenges.

IV. CONCLUSION

In summary, our analysis of network configurations indi-
cates they are rife with patterns that can exploited to flag
configuration errors. Contrast set learning and link prediction
are two promising approaches for detecting these patterns, and
we are actively working to address the challenges associated
with these approaches.
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