Localizing Router Configuration Errors Using Unsatisfiable Cores

Ruchit Shrestha® Xjaolin Sun,* Aaron Gember-Jacobson
Colgate University
{rshrestha, xsun, agemberjacobson}@colgate.edu

Abstract

Router configuration errors are unfortunately common and
difficult to localize using current network verification tools.
Consequently, repairing a network—either manually or
automatically—can be time consuming. We present a tech-
nique that uses unsatisfiable cores from SMT-based network
models to accurately identify which parts of a network’s con-
figurations are likely the cause of requirement violations.

1 Motivation

Many networks rely on distributed routing protocols to de-
cide how packets are forwarded through the network. The
protocols’ decisions are influenced by relationships, prefer-
ences, and filters expressed in router configurations. Prior
work has shown these configurations are often complex, due
in part to the low-level of abstraction exposed by router APIs
and the breadth of requirements—e.g., reachability, way-
pointing, and path preferences—networks must satisfy [2].

The complexity of router configurations has two negative
implications. First, it is difficult for network operators to cor-
rectly update configurations to satisfy new requirements or
improve the implementation of existing requirements; conse-
quently, configuration errors are common. Second, locating
errors within configurations is difficult.

To help address these issues, researchers have developed
several tools for verifying [1} 4, 6] and repairing [3| 5] con-
figurations. These tools construct a model of the network’s
semantics—e.g., a system of Satisfiability Modulo Theories
(SMT) constraints—and use the model to check whether the
network satisfies certain requirements. If a requirement is vi-
olated, a verifier outputs a counterexample that demonstrates
the violation, whereas a repair tool outputs a configuration
patch that corrects the violation.

Limitations of current tools. While these tools have shown
significant promise, we argue that they suffer from a funda-
mental flaw: insufficient fault localization. In software engi-
neering, fault localization is the process of identifying which
lines of a program likely cause certain test cases to fail [8].
This information is useful, because it can significantly re-
duce the space of possible code fixes and, correspondingly,
the time required to (automatically) repair the program.
State-of-the-art network verification/repair tools fail to
provide/leverage such information, thus making it more dif-
ficult for humans and machines to repair configurations. In
particular, state-of-the-art verifiers [1} 4} 6] provide a single

*Undergraduate student author

forwarding path and environment (e.g., set of failed links)
that demonstrate a violation, but they do not indicate: (1)
which portions of the configurations influenced the compu-
tation of the forwarding path; (2) whether routers on the path,
off the path, or both are at fault; (3) whether violations of the
same requirement may manifest in different ways under dif-
ferent failure scenarios; and (4) whether violations of differ-
ent requirements are related—e.g., caused by the same error.
State-of-the-art repair tools [3| [5]—which produce patches
rather than counterexamples—consider the entire space of
possible repairs and rely on general SMT heuristics to nar-
row the search space. Consequently, these tools are unable
to scale to networks with many routers or requirements.

Objective and challenges. Our goal is to design a technique
for accurately localizing errors in network configurations,
thus paving the way for faster network repair. This requires
overcoming unique challenges that are not readily addressed
by existing software fault localization techniques [8]]. First,
network configurations are the input to a router’s control
software. The software itself is typically closed source and
out of a network operator’s control. Hence, unlike software
fault localization, we seek to localize errors in a program’s
input. Second, routing protocols and configurations are in-
herently distributed. We must consider multiple programs,
each with its own input, running and passing messages in
parallel. Thus, network fault localization is more complex
than analyzing a single- or even multi-threaded program.

2 Approach

Our key insight is to localize configuration faults using un-
satisfiable cores generated from SMT-based models of net-
work configurations’ semantics.

SMT-based network models. These models [} [3]] abstract
away the details of router control software—which is not the
target of our fault localization—and encode a network’s dis-
tributed decision processes as a single system of logical for-
mulas. The models include symbolic variables representing
route advertisements and forwarding rules and constraints on
these variables representing route filters, preferences, and se-
lection procedures. The latter are closely tied to configura-
tions’ syntax, which makes SMT-based models better suited
for fault localization than graph-based models [4} 15, 6]. By
introducing additional constraints that encode a network re-
quirement and using an SMT solver to check whether the
problem is satisfiable, we can determine whether the require-
ment is violated. It is important to note that Minesweeper [/1]]

actually encodes the negation of network requirements, such
that the problem is satisfiable iff a requirement is violated; a
satisfying solution thus represents a counterexample.

If the SMT problem is unsatisfiable, the solver produces
an unsatisfiable core: i.e., a set of incompatible constraints.
Due to Minesweeper’s use of negated requirements, the
problem is unsatisfiable iff a requirement is always ful-
filled. The constraints in an unsatisfiable core thus represent
route selection procedures and configuration segments that
together lead to correct network behavior.

Generating useful unsatisfiable cores. Since unsatisfiable
cores are associated with correct network behavior, it may
seem as though they are unsuitable for locating the cause(s)
of requirement violations. However, by obtaining unsatisfi-
able cores for violated requirements and considering unsat-
isfiable cores’ inverse, we can successfully localize faults.

To obtain unsatisfiable cores for violated requirements, we
force the SMT solver to “ignore” all counterexamples (i.e.,
satisfying solutions). In particular, we iteratively solve and
add a constraint—specifically, the negation of the solution—
to the problem, until no more counterexamples exist and
the problem is unsatisfiable. However, since the problem
was satisfiable prior to adding these constraints, the solver
is likely to produce an unsatisfiable core that includes one of
the negated solutions, which does not convey anything about
the correctness of configurations. Consequently, we restrict
the constraints the solver may include in an unsatisfiable core
to those contained in the original problem, thus forcing the
solver to expose a “useful” unsatisfiable core.

Given an unsatisfiable core for a violated requirement, we
identify potentially faulty constraints by computing the set
difference between the full set of constraints and the unsatis-
fiable core. We also ignore all constraints that encode route
selection procedures, which are determined by protocol stan-
dards, not configurations.

Multiple, minimal unsatisfiable cores. Using the basic
approach described above can result in fault localization
that both under- and over-estimates which configuration seg-
ments likely contain errors. Under-estimation can arise when
the SMT solver produces a non-minimal unsatisfiable core,
which includes constraints that do not contribute to the prob-
lem’s unsatisfiability or, equivalently, correct network behav-
ior. Over-estimation can arise due to the SMT solver produc-
ing only one, out of many, unsatisfiable cores. Hence, we
may overlook constraints that contribute correct network be-
havior, and assume more configuration segments are faulty.

To address these issues, we compute all minimal unsatis-
fiable cores using the MARCO algorithm [[7]. We then com-
pute the set difference between the full set of constraints and
the union of all minimal unsatisfiable cores.

3 Preliminary Results & Future Work

We have implemented a prototype of our technique in
Minesweeper [1]. We evaluate its accuracy using six syn-

m 0% | ’—'—17

0O 50%
= 100%

<+
3
N
B
— =
- g

T
ACL Route filter Prefixes Redistrib. 0 100 200 300 4
Error type Time (seconds)

10 12 14

8

quuirgmem viclations

3

2

T T T T T
00 500 600

(a) Recall (b) Performance
Figure 1: Evaluation results

thetic networks. Each network contains 3 to 20 routers and
employs some combination of BGP, OSPF, static routes, and
route redistribution to enable reachability between several
pairs of subnets connected to different routers. We synthet-
ically introduce errors into these configurations by adding
access control lists (ACLs), adding route filters, removing
advertised prefixes, and disabling route redistribution.

We measure our techniques’ recall, precision, and perfor-
mance. Figure[Tashows for each type of error the fraction of
reachability requirement violations for which our technique
identified none, half, or all of the SMT constraints that are
derived directly from faulty configuration stanzas; our tech-
nique effectively detects three of the four types of errors.
For all requirement violations, our technique’s precision is
100%. Figure |1b| shows that our technique takes about 10
seconds to localize faults for 90% of the violations; fault lo-
calization takes the longest in our 20-router fat-tree topology.

In the future, we plan to evaluate our technique on real
network configurations and additional types of errors. In ad-
dition, we plan to explore how to localize faults at a sub-
constraint granularity to narrow our localization to individual
lines of configuration, rather than configuration stanzas.

References

[1] R. Beckett, A. Gupta, R. Mahajan, and D. Walker. A general approach
to network configuration verification. In SIGCOMM, 2017.

[2] T. Benson, A. Akella, and D. Maltz. Unraveling the complexity of
network management. In NSDI, 2009.

[3]1 A. El-Hassany, P. Tsankov, L. Vanbever, and M. Vechev. Netcomplete:
Practical network-wide configuration synthesis with autocompletion. In
NSDI, 2018.

[4] S.K.Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. D. Millstein, V. Sekar,
and G. Varghese. Efficient network reachability analysis using a suc-
cinct control plane representation. In OSDI, 2016.

[5] A. Gember-Jacobson, A. Akella, R. Mahajan, and H. Liu. Automati-

cally repairing network control planes using an abstract representation.

In SOSP, 2017.

A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan. Fast

control plane analysis using an abstract representation. In SIGCOMM,

2016.

M. H. Liffiton, A. Previti, A. Malik, and J. Marques-Silva. Fast, flexible

MUS enumeration. Constraints, 21(2), 2016.

[8] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. A survey on
software fault localization. IEEE Trans. Software Eng., 42(8), 2016.

[6

=

[7

—

	Motivation
	Approach
	Preliminary Results & Future Work

