
Localizing Router Configuration Errors Using Unsatisfiable Cores
Ruchit Shrestha, Xiaolin Sun, and Aaron Gember-Jacobson (Colgate University)

1. sdBackgroundMotivation

Example network

Results

References & Acknowledgements

Current verification/repair tools

Our Approach
Networks relying on distributed routing protocols often have complex
router configurations. This complexity makes it difficult for operators to
update configurations and locate errors in configurations.

Our key insight is to localize configuration faults using unsatisfiable cores
generated from SMT-based models of network configurations’ semantics.

Obtaining unsatisfiable cores

Challenges:
● Unsat core may not be minimal ⇒ core includes constraints that do not

contribute to correct behavior ⇒ under estimate faults
● Solver produces one, out of many, unsat cores ⇒ overlook constraints

that contribute to good behavior ⇒ over estimate faults
Solution:
● Compute all minimal unsat cores using MARCO [6]
● Faults = N - union of all minimal unsat cores

● Develop domain-specific heuristics—e.g., failure equivalence
classes—to speed-up computation of unsat cores

● Evaluate our approach on real network configurations and additional
types of errors

● Determine how to localize faults at a sub-constraint granularity to
identify faults in individual lines of configuration, rather than stanzas

Policy* Satisfied Counterexample

S1⇒D1 X R3→Blocked

S1⇏D2 X R3→R2→D2

S2⇒D1 X R1→R3→Blocked

S2⇏D2 X R1→R3→R2→D2

*should hold even under single link failure

State-of-the-art network verifiers [1, 3, 5] do not indicate:
● which portions of the configurations influenced the computation of the

forwarding path
● whether routers on the path, off the path, or both are at fault
● whether violations of the same requirement may manifest in different

ways under different failure scenarios
● whether violations of different requirements are related

State-of-the-art network repair tools [2, 4] do not scale to networks with
many routers or policies, because they consider all possible repairs.

II.Current verification/repair toolsFault localization
Software fault localization is the process of identifying which lines of a
program likely cause certain test cases to fail. Our goal is to design a
technique for accurately localizing errors in network configurations, thus
paving the way for faster network repair.

Multiple, minimal unsatisfiable cores

1. R. Beckett, A. Gupta, R. Mahajan, D. Walker. A general approach to network configuration verification. SIGCOMM, 2017.
2. A. El-Hassany, P. Tsankov, L. Vanbever, M. Vechev. Netcomplete: Practical network-wide configuration synthesis with

autocompletion. NSDI, 2018.
3. S. K. Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. D. Millstein, V. Sekar, G. Varghese. Efficient network reachability

analysis using a succinct control plane representation. OSDI, 2016.
4. A. Gember-Jacobson, A. Akella, R. Mahajan, and H. Liu. Automatically repairing network control planes using an abstract

representation. SOSP, 2017.
5. A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan. Fast control plane analysis using an abstract

representation. SIGCOMM, 2016.
6. M. H. Liffiton, A. Previti, A. Malik, and J. Marques-Silva. Fast, flexible MUS enumeration. Constraints, 21(2), 2016.

This work is funded by National Science Foundation Grant CCF-1637427 and Colgate University.

e.g., Minesweeper [1]

∧￢CE

Policy
violated

Policy
satisfied

Correct Behavior Incorrect Behavior

Faults = N - Unsat Core

N ∧ ⌐P

Unsat core Counterexample

Models like Minesweeper [1] abstract away the details of router control
software and encode a network’s distributed decision process as a single
system of logical formulas.

N: BGP
R2→R3

 = if Match(Dst,D1) then {D1,0} else {D2,0}

 (⋀
n=R1,R2

 BestAd ≼ BGP
n→R3

) ⋀ (⋁
n=R1,R2

 BestAd == BGP
n→R3

)

 ControlFwd
R3→R2

 = (BestAd == BGP
R2→R3

)

 DataFwd
R3→R2

 = ControlFwd
R3→R2

 ⋀ ￢Match(Dst, D1)

 Reach
R3→R2

 = DataFwd
R3→R2

 ⋁ (DataFwd
R3→R1

 ⋀ Reach
R1→R2

)

 ...

P: Src = S1 ⋀ Dst = D1 ⋀ Reach
R3→R2

Network model

Future Work

We implement our approach atop Minesweeper [1] and test it on 6
synthetic networks of varying size that use a combination of OSPF, BGP,
static routes and route redistribution to enable reachability between
different pairs of subnets connected to different routers. We introduce
errors into these configurations by adding ACLs, adding route filters,
removing advertised prefixes, and disabling route redistribution.

Figure (a) shows for each type of error the fraction of reachability
requirement violations for which our technique identified none, half or all of
the SMT constraints associated with faulty configuration stanzas.
Currently, our approach effectively detects three of four types of errors that
lead to reachability violations.

Figure (b) demonstrates that our approach requires less than 10 seconds
to localize faults for 90% of the network scenarios.

(a) Recall (b) Performance

D

