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1 Introduction

Configurations are a crucial but error-prone component of
networks. While significant progress has been made in effi-
ciently verifying network configurations using various forms
of model checking, correctly modeling configuration seman-
tics remains a complex and error-prone task [3, 8]. Enumer-
ating policies to check is also hard, and using policy-mining
tools [4] leads to a conundrum where configurations are veri-
fied based on polices inferred from those configurations.

An alternative verification strategy is to infer patterns from
raw configuration syntax [6, 7], thereby avoiding the difficult
tasks of modeling configuration semantics and enumerating
policies. Identifying patterns within and across configura-
tion elements allows network engineers to find pattern vi-
olations and flag them for further review. Minerals [7] and
SelfStarter [6] follow this philosophy and identify similarities
(and discrepancies) in configurations. However, these tools
focus their attention on identifying relationships between a
few select elements—e.g., interfaces [7] or access control lists
(ACLs) [6]—while ignoring other important elements such
as layer-2 components, syntactic sugar, and comments.

In prior work [5], we proposed using Contrast Set Learning
(CSL)—a form of association rule mining which attempts to
identify meaningful differences between separate groups—to
identify subtle but important patterns in network configu-
rations. For example, the presence/absence of the keyword
"student" in a interface’s description is a meaningful differ-
ence when interfaces with this keyword participate in a certain
VLAN, whereas interfaces without this keyword do not partic-
ipate in the VLAN. Deviations from this pattern are indicative
of potential security or reachability problems.

This approach also allows for transparency in the decision-
making process, which, given the vital nature of configura-
tions, is a significant advantage over black-box machine learn-
ing models. However, since CSL’s output scales exponentially
with the size and complexity of the configurations, discerning
meaningful relationships remains challenging. This poster
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Figure 1: A sample CSL input for Small university network.
Interfaces is the primary key and vlan200 is the group feature

introduces a rule filtering, selecting, and condensing process
to address this challenge.

2 Our Approach

CSL Input. CSL takes as input a dataset, a group feature,
and a rule length. The dataset is a tabular representation of
the networks’ configurations which encapsulates the rela-
tionships between different elements. We leverage existing
approaches [1] to identify configuration elements and their
relationships with other elements. The group feature is the
target of our rule-generation—CSL attempts to identify mean-
ingful differences (using other network attributes) between
different values of the group feature. Rule length is the num-
ber of network attributes involved in predicting a particular
group feature value.
Rule Generation. CSL ordinarily outputs every possible rule
(of stated length) for each unique group-feature value satis-
fying a minimum threshold of support. We modified an open
source implementation of the CSL algorithm STUCCO [2] to
eliminate this threshold requirement and obtain all possible
rules to widen our pools for meaningful rule search. Each
rule is an IF-THEN statement about the group-feature value—
IF part containing a combination of network attribute-value
pairs(limited by rule length) and the THEN part pointing
to the group-feature value it predicts. Since, STUCCO only
produces rule for a particular group-feature, we repeat this
process for all possible group-features. This process scales
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exponentially with more group-features indicating a need for
faster rule generation. One of our contributions is paralleliz-
ing several segments of STUCCO to reduce the computation
by several orders of magnitude.

Rule Filtering. A good rule set should contain rules covering
all possible instances of a chosen group-feature value while
being limited enough for proper verification. Simple filter-
ing mechanism based on precision, recall, and f1 score were
unable to isolate useful rules. We reattained precision as a
metric because we want our our rules to be accurately capture
underlying patterns. Recall became unimportant because we
could use multiple rules for predicting different instance of
same group-feature value —this does away with the neces-
sity of broadly applicable rules. This led us to develop a new
metric for rules called Rule coverage, which identifies all the
instances where both the IF and THEN part of a particular
rule are satisfied. This metric proved to be critical in building
comprehensive rule-set while controlling for overlap. Over-
lap, for an instance of group-feature value, is defined as the
number of rule-sets covering it. While some degree of overlap
is preferable, a high degree of overlap in the rule-set suggest
redundancy in the rule set. Thus precision in conjunction with
Rule Coverage allows us to reduce the STUCCO output to
small set of of useful rules using a greedy heuristic to select
rule-sets while controlling the the overlap.

Next-Best Rule Set. Next best rule selection is a greedy
heuristic which selects the rule with most coverage in each
step. Since current coverage depends on the previous rules
selected (and their coverage), a greedy approach allows us to
maximize total coverage with the fewest possible rules.

It works by creating a two dimensional matrix for each
group-feature. Each column is a rule produced by STUCCO
while each row matches a corresponding instance of the group-
feature value in the initial database. The matrix is populated
using the rule coverage metric with 1 if there is rule covers
the row otherwise 0 if there is none.

Cgroup =


Rules =⇒

Rows 1 0 1 · · · 0y 0 1 1 · · · 0
...

...
... · · ·

...


We introduce the FOR_SUM vector A =⇒ [k1,k2,k3...kn],

where ki is the initial row weight (a hyperparameter) and n the
length is the number of rows. Each element tracks the current
coverage of the corresponding row in the original dataset. For
simplicity, we assume ki = k ∀ i such that 1 ≤ i ≤ n, i.e. each
row has the same weight at the beginning.

Finally, the FOR_REDUCTION B =⇒ 1/d is a hyperpa-
rameter for controlling rule overlap: a higher value of d cor-
responds to more overlap and vice versa.

To select the next rule, we multiply the FOR_SUM with the
two dimensional matrix and select the rule with the highest
value. We append this rule in to our final rule-set, and multiply
the corresponding column vector by the FOR_reduction value,

substituting each 0 with 1 and dot multiply it with FOR_SUM
matrix. This process is repeated until the sum of all elements
in FOR_SUM approaches 0.
Rule Set Condensation. For each group-feature, we iden-

tify the most impactful elements from the final rule set. Since
high impact network attributes-value pairs tend to repeat them-
selves in multiple rules in the final rule-sets, we group the
rules together according to their recurrence. The rules contain-
ing the most recurring element are grouped together under a
umbrella group; we identify the most recurring element in the
remaining rules and repeat the process. These process creates
a hierarchy within the final rule set allowing for further insight
in a rule’s relative impact on the group-feature value.

3 Preliminary Results & Future work

We implemented our approach in python and evaluated it us-
ing configurations from small university campus. We limited
our search to two length rules and produced condensed rule
sets for the network-wide configurations. Our final rule-sets
are significantly smaller than the STUCCO output rules and
contain rules deemed useful by the network engineers. Our
future work will be directed toward: i) more comprehensive
testing in other enterprise networks; ii) Presenting violations
in more user friendly interactive graph. iii) Comparing the
efficacy of different length of rule sets.
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