Evaluating Browser-Based Networking for Real-Time Multiplayer Games

Daniel Orlando”
Colgate University

1 Introduction

Web browsers’ support for full 3D graphics (e.g., WebGL and
WebGPU) make browsers a viable platform for gaming. How-
ever, development real-time multiplayer games for browsers
is challenging due to browsers’ limited networking options.
In this work, we evaluate the suitability of three browser
networking options—WebSockets, WebRTC, and WebTrans-
port—for competitive real-time multiplayer games, comparing
their performance under typical game networking workloads.
This differs from prior works on networking for games [3,5,6]
which focus on non-browser-based games.

2 Networking requirements

Real-time multiplayer games (e.g., Fortnite, Valorant) often
rely on tick-based simulations that advance the game state in
discrete, fixed time intervals (e.g., 30 ticks per second) [1]. On
each tick, a client transmits its inputs (e.g., player movement)
to a central server. To account for the one-way delay (OWD)
from the clients to the server, the server’s simulation lags
behind the clients’ simulation. Under ideal conditions, all
clients’ inputs for tick n arrive at the server just before the
server simulates tick n. After processing clients’ inputs for
tick n, the server sends the authoritative game state (e.g.,
positions of all players) back to clients. Clients process these
updates at their next tick—which may be > n+ 1 depending
on the round-trip time (RTT) relative to the gap between
ticks.! Figure | depicts this sequence of events.

To achieve a better quality of experience (QoE), the net-
working layer must provide: (1) low latency to permit higher
tick rates and minimize the lag between the clients’ simulation
of tick n and the clients’ receipt of the server’s authoritative
game state for tick n, thereby reducing potential discrepancies

*Undergraduate student author

UIf the RTT is greater than the time between ticks, clients typically extrap-
olate the game state for tick n+ 1, n+2, ... n+ k based on the most recent
update from the server, and reconcile any differences when the server’s
update for tick n is processed by the client & ticks later.

Aaron Gember-Jacobson
Colgate University

Client A Server

Client B Client A
+— Tick 1

Client B
— Tick 1

OWD = 0.5 ticks OWD = 1.5 ticks

Figure 1: Example tick-based simulations

that must be reconciled; (2) low jitter to minimize the likeli-
hood of clients’ inputs for tick » arriving substantially before
or after the server’s simulation for tick n, thereby reducing
the queuing or discarding, respectively, of inputs; and (3) low
loss to minimize the need for the server to extrapolate clients’
inputs, thereby reducing potential discrepancies between the
clients’ simulation and the server’s simulation.

3 Browser-based networking

While non-browser-based real-time games typically use UDP
secured with DTLS, web browsers offer three networking
options—WebSockets, WebRTC, and WebTransport—each
with unique traits that impact their ability to meet the afore-
mentioned requirements.

WebSockets [4] are widely supported and enable flexible
communication over a TCP connection. TCP’s reliable de-
livery eliminates loss, but retransmitted updates incur higher
latency and may arrive after the server has processed the rel-
evant tick, causing the server to ignore the updates and the
retransmission to be fruitless. Additionally, the congestion
control algorithms commonly used by TCP are optimized for
throughput instead of latency.

WebRTC [2] is designed for real-time, peer-to-peer media de-
livery. WebRTC offers UDP-like semantics to avoid fruitless
retransmissions and employs a congestion control algorithm
optimized for latency. However, WebRTC involves many lay-
ers of protocols, which increases data processing overhead.

Client Input to Server Authoritative Response Time Distribution
120Hz (8.33ms per tick)

WebTransport upp WebRTC WebSocket WebTransport upp WebRTC WebSocket

E 3 3 H
Percentage of Packets (%)

°

0.0% Loss 0.1% Loss

Network Condition

Legend (RTT in Ticks at 120Hz)

W ticke3ams) [l 2ticks(16.67ms) [3 ticks(25.0ms) 4 ticks(33.33ms) 5ticks(4167ms) [6+(50+ms)

Figure 2: RTT distribution for all tested protocols under dif-
ferent loss conditions.

WebTransport [7] is an emerging standard that leverages
QUIC’s modern networking capabilities to support UDP-like
datagrams. WebTransport’s support for for unreliable commu-
nication eliminates the latency and jitter impacts of retrans-
missions, and WebTransport’s congestion control (BBRv1) is
optimized to low-latency.

4 Comparison of protocol performance

To assess each protocol’s performance, we ran a simple tick
based simulation in Rust using open source transport libraries
for WebSockets, WebRTC, and WebTransport. As a baseline,
we also tested a plain UDP socket secured with DTLS, to
reflect the kind of networking we might see in a standalone
multiplayer application outside of the browser constraints.
Setup: We use a research server at our university in upstate
New York and a DigitalOcean server in New York city to
simulate real network conditions. We conducted 3-minute
tests in a network simulation running at 120 ticks per second,
under ideal (0.0% packet loss) and degraded (0.1% packet
loss) network conditions. Packet loss was implemented using
an eBPF XDP program that randomly dropped packets at
the specified loss rate. We quantify performance in terms of
the number of ticks elapsed between the tick at which the
client sent each input and the tick at which the response from
the server was processed. A lower number of elapsed ticks
translates to a lower feasible lag between the simulations on
the client and server, leading to a better QoE.

Results: Figure 2 summarizes the measured latencies un-
der different conditions. WebTransport outperforms all other
protocols in both loss scenarios. Its performance advantage
over raw UDP likely stems from its BBRv1 congestion con-
trol implementation. Despite utilizing UDP data channels,
WebRTC’s complex protocol stack hinders its speed and per-
formance. WebSockets has the highest latency across both
optimal and degraded network conditions. In the packet loss
scenario, Figure 2 clearly demonstrates the negative impact of

TCP’s retransmission mechanisms on real-time multiplayer
games.

5 Future work

Our future work will focus on a few areas. First, we plan to
extend our protocol evaluations from controlled server envi-
ronments to actual web browsers to assess performance on
an end-user’s device. Second, our current experimental setup
uses a stable, high-capacity connection, which doesn’t reflect
typical user experiences. Testing each protocol across simu-
lated residential connections or mobile networks (e.g, 3G, 4G,
LTE) and multiple geographic vantage points would provide
valuable insights into their performance under variable net-
work conditions. Finally, we plan to investigate how specific
mechanisms in each transport’s congestion control algorithms
are impacting their performance for real-time gaming.

References

[1] DEWET, M., AND STRAILY, D. Peeking into valorant’s
netcode. https://technology.riotgames.com/news/
peeking-valorants-netcode. July 28, 2020.

[2

—

JESUP, R., LORETO, S., AND TUXEN, M. WebRTC Data Channels.
RFC 8831, Internet Engineering Task Force, Jan. 2021.

KAMARAINEN, T., AND PIHLAJAMAKI, M. Aspects of networking in
multiplayer computer games. International Journal of Computer Games
Technology (2017). Accessed: 2024-12-13.

MELNIKOV, A., AND FETTE, I. The WebSocket Protocol. Tech. Rep.
6455, Internet Engineering Task Force, Dec. 2011.

3

=

[4

=

[5] R.,S.S.,AND S., A. D. Analyzing the network traffic requirements of
multiplayer online games. I[EEE Transactions on Network and Service
Management (2008). Accessed: 2024-12-13.

[6

—

SAIEDIAN, S., AND HASHMI, S. An evaluation of videogame network
architecture performance and security. Computer Networks (2021).
Accessed: 2024-12-13.

VASILIEV, V. The WebTransport Protocol Framework. Internet-Draft
draft-ietf-webtrans-overview-09, Internet Engineering Task Force, Feb.
2025. Work in Progress.

[7

—

https://technology.riotgames.com/news/peeking-valorants-netcode
https://technology.riotgames.com/news/peeking-valorants-netcode

	Introduction
	Networking requirements
	Browser-based networking
	Comparison of protocol performance
	Future work

