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1. Motivation

/ Why browser gaming?

and no 1nstallation

\ gaming?

>

o € Massive reach: Browser games offer instant play

0 e Challenge: Competitive multiplayer games are
considered unplayable above 100ms ping

o 7 Unknown: Can browser technologies achieve the
consistent low latency required for competitive

2. Multiplayer Background

Client 1 (OWD=1) vs Client 2 (OWD=2)

OWD = 1 tick
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/ " Tick-Based Simulation: Multiplayer games discretize \
time into fixed intervals ("ticks") to maintain deterministic
state synchronization across distributed clients.

%s Clients run ahead of Server: Client’s run
one-way-delay (OWD) in ticks ahead of server so that input

Kfor tick N arrives just in time for server processing tick N. /

CLIENT 1 SERVER CLIENT 2
C o N
Network Condition Effects
- Racecar Example: Consider a game with two clients,
each controlling their own race car. The first to get to point D
\_wins. /
Latency Effects
Setup: Two clients with different network delays (C1: 1
tick OWD, C2: 2 ticks OWD)
Result: Lower-latency client always wins
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Loss Effects
Setup: Two clients with same OWD, but Client 1
experiences loss
Result: C1 would visually stutter and C2 would win
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3. Web Realtime Protocols

Tick-based simulations need low-latency, bi-directional
communication. We evaluate three browser-native protocols.

Feature UDP w/ DTLS WebSockets WebRTC WebTransport
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Stack DTLS e SRTP, RTP, DTLS QUIC
Datagram Support v X v v
Browser Support X v v -

Congestion Control None Cubic GCC BBR

4. Methodology

/ | Tick Based Setup: \

"4 Client: Colgate (Hamilton NY)

& Servers: NYC (low latency), SF (high latency)

# Protocols: WebSockets, WebRTC, WebTransport, UDP
with DTLS (as baseline)

" Measurement: Record response times per tick for each

Network Protocol Performance - 0% Loss Network Protocol Performance - 0.5% Loss

Latency (ms)
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UDP WebSockets WebTransport WebRTC UDP WebSockets WebTransport WebRTC

k transport across ten 3-minute sessions over a 12-hour period./
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Naive Setup - blast packets back and forth
With no tick based simulation, 1nitial benchmarks
would tell us that all three protocols are quite similar
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S. Results

Baseline Interpretation: Under 1deal network
conditions, all 4 protocols perform nicely

128 ticks per second, Colgate -» NYC

Percentage of Packets (%)

Loss Interpretation: As soon as loss 1s introduced,

TCP WebSockets begin to suffer

128 ticks per second, Colgate —» NYC, 0.1% loss

Percentage of Packets (%)

Protocol

Latency Interpretation: WebTransport leads all web
protocols but still trails UDP.

128 ticks per second, Colgate —» SF

Percentage of Packets (%)

WebTransport

Protocol

Tick-vary Interpretation: Lower tickrates stretch
time between ticks which increases per-tick latency.

32 ticks per second, Colgate -» NYC

Percentage of Packets (%)
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62.5 | 70.3 78.1 85.9 93.8 101.6 109.4 117.2+
= Key Takeaways:

WebTransport: Consistently best performance
under varying conditions.

to reliability & TCP.

)

X WebRTC: High protocol overhead, doesn’t
@erform well 1in loss scenarios because of CC.

XX WebSockets: Poor for real-time multiplayer due
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