> = a o

1. Motivation

/ Why browser gaming?

and no 1nstallation

\ gaming?

>

o € Massive reach: Browser games offer instant play

0 e Challenge: Competitive multiplayer games are
considered unplayable above 100ms ping

o 7 Unknown: Can browser technologies achieve the
consistent low latency required for competitive

2. Multiplayer Background

Client 1 (OWD=1) vs Client 2 (OWD=2)

OWD = 1 tick

TICK 101 - TICK101 TICK

TICK 102 A TICK

TICK 103 A TICK

TICK 104 - TICK

TICK: 105 ~ TICK|105 TICK

TICK 106 A TICK!106 TICK!105

OWD = 2 ticks

102

103

104

105

106

TICK!107

4

/ " Tick-Based Simulation: Multiplayer games discretize \
time into fixed intervals ("ticks") to maintain deterministic
state synchronization across distributed clients.

%s Clients run ahead of Server: Client’s run
one-way-delay (OWD) in ticks ahead of server so that input

Kfor tick N arrives just in time for server processing tick N. /

CLIENT 1 SERVER CLIENT 2
C o N
Network Condition Effects
- Racecar Example: Consider a game with two clients,
each controlling their own race car. The first to get to point D
_wins. /
Latency Effects
Setup: Two clients with different network delays (C1: 1
tick OWD, C2: 2 ticks OWD)
Result: Lower-latency client always wins
P y > § . *&8 & & °8 &8 1@
¢ ‘1 B 8 . g N | 8
il | P ¢ g ’ g S | g

60 60 58 -~ 8 80 @

> = @! =

C1
t=1

Loss Effects
Setup: Two clients with same OWD, but Client 1
experiences loss
Result: C1 would visually stutter and C2 would win

Wall Time 1 Wall Time 2 Wall Time 3 Wall Time 4 Wall Time 5 Wall Time
S C2 C1 S C2 C1 S C2 C1 S C2 C1 S C2 C1 S
t=0 t=1 t=2 t=1 t=2 t=3 =2 t=3 t=4 t=3 t=4 t=5 t=4 t=5 t=6 =5
> ¥ - | i & "1 &t
. - D il © g c8 8 °t
" 8 P] | "t 8 R g °
A

&0 60 8 80 @

3. Web Realtime Protocols

Tick-based simulations need low-latency, bi-directional
communication. We evaluate three browser-native protocols.

Feature UDP w/ DTLS WebSockets WebRTC WebTransport

6

Stack DTLS e SRTP, RTP, DTLS QUIC
Datagram Support v X v v
Browser Support X v v -

Congestion Control None Cubic GCC BBR

4. Methodology

/ | Tick Based Setup: \

"4 Client: Colgate (Hamilton NY)

& Servers: NYC (low latency), SF (high latency)

Protocols: WebSockets, WebRTC, WebTransport, UDP
with DTLS (as baseline)

" Measurement: Record response times per tick for each

Network Protocol Performance - 0% Loss Network Protocol Performance - 0.5% Loss

Latency (ms)
[
o

5 -
UDP WebSockets WebTransport WebRTC UDP WebSockets WebTransport WebRTC

k transport across ten 3-minute sessions over a 12-hour period./

&

Naive Setup - blast packets back and forth
With no tick based simulation, 1nitial benchmarks
would tell us that all three protocols are quite similar

N

S. Results

Baseline Interpretation: Under 1deal network
conditions, all 4 protocols perform nicely

128 ticks per second, Colgate -» NYC

Percentage of Packets (%)

Loss Interpretation: As soon as loss 1s introduced,

TCP WebSockets begin to suffer

128 ticks per second, Colgate —» NYC, 0.1% loss

Percentage of Packets (%)

Protocol

Latency Interpretation: WebTransport leads all web
protocols but still trails UDP.

128 ticks per second, Colgate —» SF

Percentage of Packets (%)

WebTransport

Protocol

Tick-vary Interpretation: Lower tickrates stretch
time between ticks which increases per-tick latency.

32 ticks per second, Colgate -» NYC

Percentage of Packets (%)

Response Time Leiend
0.0 7.8 15.6 39.1

80
60 -
40
20 1
0 -

WebTransport ubpP WebRTC WebSocket

Wel:;RTC WebSocket
100 -
80 -
60 -
40
20 1
0 -

WebTransport UDP WebRTC WebSocket

Protocol

ms
ms

23.4 31.2 5 46.9 54.7
62.5 | 70.3 78.1 85.9 93.8 101.6 109.4 117.2+
= Key Takeaways:

WebTransport: Consistently best performance
under varying conditions.

to reliability & TCP.

)

X WebRTC: High protocol overhead, doesn’t
@erform well 1in loss scenarios because of CC.

XX WebSockets: Poor for real-time multiplayer due

»

4

