
Evaluating Browser-Based Networking for Real-Time Multiplayer Games

5. Results

2. Multiplayer Background

1. Motivation

3. Web Realtime Protocols

4. Methodology

Daniel Orlando and Aaron Gember-Jacobson

Tick Based Setup:
󰳕 Client: Colgate (Hamilton NY)
🌐 Servers: NYC (low latency), SF (high latency)
🧪 Protocols: WebSockets, WebRTC, WebTransport, UDP
with DTLS (as baseline)
⏱ Measurement: Record response times per tick for each
transport across ten 3-minute sessions over a 12-hour period.

⏱ Tick-Based Simulation: Multiplayer games discretize
time into fixed intervals ("ticks") to maintain deterministic
state synchronization across distributed clients.
 🏇 Clients run ahead of Server: Client’s run
one-way-delay (OWD) in ticks ahead of server so that input
for tick N arrives just in time for server processing tick N.

Why browser gaming?
○ 🌐 Massive reach: Browser games offer instant play

and no installation
○ 🕹 Challenge: Competitive multiplayer games are

considered unplayable above 100ms ping
○ ❓ Unknown: Can browser technologies achieve the

consistent low latency required for competitive
gaming?

Key Takeaways:
✅ WebTransport: Consistently best performance
under varying conditions.
❌ WebSockets: Poor for real-time multiplayer due
to reliability & TCP.
❌ WebRTC: High protocol overhead, doesn’t
perform well in loss scenarios because of CC.

Latency Effects
Setup: Two clients with different network delays (C1: 1

tick OWD, C2: 2 ticks OWD)
Result: Lower-latency client always wins

Network Condition Effects
🏎 Racecar Example: Consider a game with two clients,
each controlling their own race car. The first to get to point D
wins.

Baseline Interpretation: Under ideal network
conditions, all 4 protocols perform nicely

Loss Interpretation: As soon as loss is introduced,
TCP WebSockets begin to suffer

Latency Interpretation: WebTransport leads all web
protocols but still trails UDP.

Tick-vary Interpretation: Lower tickrates stretch
time between ticks which increases per-tick latency.

 Tick-based simulations need low-latency, bi-directional
communication. We evaluate three browser-native protocols.

 Naïve Setup - blast packets back and forth
With no tick based simulation, initial benchmarks

would tell us that all three protocols are quite similar

Loss Effects
Setup: Two clients with same OWD, but Client 1

experiences loss
Result: C1 would visually stutter and C2 would win

