Non-interoperability Detection for Routing Protocol
Implementations

X1 Jiang
Colgate University
xjlang@colgate.edu

ABSTRACT

Network routing protocols help individual routers learn the net-
work topology and select efficient routes, but the standards describ-
ing these protocols often contain ambiguous specifications. The
abstract nature of the standards allows different implementations
of the same routing protocol to have various interpretations of the
specifications, causing them to experience non-interoperabilities
when running in parallel. We present a technique for detecting
such non-interoperabilities through specification mining for packet
causal relationships.

CCS CONCEPTS

» Networks — Protocol testing and verification.

ACM Reference Format:

Xi Jiang and Aaron Gember-Jacobson. 2021. Non-interoperability Detection
for Routing Protocol Implementations. In SIGCOMM ’21 Poster and Demo
Sessions (SIGCOMM °21 Demos and Posters), August 23-27, 2021, Virtual Event,
USA. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3472716.
3472843

1 MOTIVATION

Routing protocol standards define structures and algorithms for
computing and disseminating routes. Some parts of a protocol stan-
dard are quite formal: e.g., packet structures are precisely defined in
terms of field offsets, sizes, and value ranges. However, the majority
of a standard is expressed in a natural language, which may be
abstract or ambiguous. Consequently, different implementations
of a routing protocol may embody different interpretations of the
standard, leading to problems such as network instability, routing
loops, or other routing anomalies when different implementations
are used within/across routing domains.

Prior studies have shown that numerous router software bugs
cause interoperability issues among router vendors [11]. One ex-
ample of a non-interoperability problem is the 2009 global internet
slowdown[12]: Cisco routers could not correctly handled the long
Autonomous System (AS) Path from MikroTik routers used by
Supronet (a Czech Republic ISP), causing Cisco routers to expe-
rience repeated reboots and slowing down Internet traffic signifi-
cantly.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGCOMM °21 Demos and Posters, August 23-27, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8629-6/21/08.

https://doi.org/10.1145/3472716.3472843

Aaron Gember-Jacobson
Colgate University
agemberjacobson@colgate.edu

Prior works have introduced three different approaches for de-
tecting protocol interoperability issues: (1) analyze a model that
embodies the protocol standard [9]—this is useful for finding in-
consistencies or security vulnerabilities in the standard itself, but
does not consider actual implementations; (2) compare an imple-
mentation of the protocol against a model that embodies the stan-
dard [4-7, 10]—this is useful for determining whether an imple-
mentation deviates from the standard, but requires constructing a
formal model that embodies the standard and does not elucidate
differences between implementations; or (3) compare implementa-
tions of the protocol [8]—this can detect inconsistencies between
implementations, but utilizes symbolic execution which requires
access to implementations’ source code.

We present a black-box technique for detecting interoperability
issues between routing protocol implementations based on the packets
routers send and receive. Crucially, we avoid the need to translate
a protocol standard’s natural language into a formal model; we
only rely on the standard to determine the structure of packets,
which, as noted above, is formally defined. Additionally, we do not
require access to implementations’ source code, which enables our
technique to be applied to commercial protocol implementations.

2 APPROACH

Our technique for detecting routing protocol implementation non-
interoperabilities relies on inferring and comparing the packet
causal relationships for the selected implementations. After a rout-
ing protocol implementation sends (or receives) a packet A, there
exists a sets of possible packets that the implementation expects to
receive (or send) as compliant responses to A. We refer to the corre-
lation between the sent (or received) packet and the set of expected
responses as a packet causal relationship of the implementation. Our
technique computes such relations of the implementations, allowing
us to formalize the implementations’ interpretation of the standard
in terms of packet events. Moreover, inconsistencies in the rela-
tionships can serve as indicators of possible non-interoperabilities
among the implementations: one implementation can forward a
packet that it considers as a legitimate response, but the receiving
implementation may always reject such a packet as it deems the
packet as a non-compliant response.

The main challenge in developing such a technique is to com-
pute packet causal relationships that are both accurate and extensive.
First, we want to ensure that the computed packet causal relation-
ships are accurate, that is the reflected packets are indeed causally
related. Second, we want to generate extensive packet causal rela-
tionships of the implementations, hence it is important to consider
and analyze different networks scenarios.

https://doi.org/10.1145/3472716.3472843
https://doi.org/10.1145/3472716.3472843
https://doi.org/10.1145/3472716.3472843

SIGCOMM ’21 Demos and Posters, August 23-27, 2021, Virtual Event, USA

Method overview. We create small-scale networks where each
network runs a different implementation of the same routing proto-
col. Observing and analyzing the packets exchanged by the routers
allows us to compute the packet causal relationships of the im-
plementations. A naive approach to generate the packet causal
relationships is as follows: After a packet A is sent (or received) by
a router in the network, if packet B is the first packet received (or
sent) by the same router, then we assume there is a causal relation-
ship between the sending (or receiving) of A and the receiving (or
sending) of B. This process is applied to all routers within the same
network, and we union the results to generate packet causal relation-
ships for the specific implementation. As we compare the computed
packet causal relationships of different implementations, we can
flag disagreements across implementations as possible causes of
non-interoperabilities.

However, as packets in networks are exchanged at a high fre-
quency and the time spans between packet may be extremely small,
there are often scenarios where a router receives multiple pack-
ets after sending a packet (or vice versa). This becomes especially
troublesome as we are trying to determine which specific sent (or
received) packet triggered the receiving (or sending) of another
specific packet, which can result in inaccurate packet causal rela-
tionships.

Adding delay to improve accuracy. To exclude non-relevant
packets from the computed packet causal relationships and achieve
higher accuracy, we configure a fixed delay TDelay on all interfaces
of the network. For example, a 900ms TDelay implies that, when
a router sends a packet, the receiving router will not receive and
respond to the packet until after at least 900ms. As a result, after a
packet A is sent (or received) by a router in the network, instead of
considering the first packet received (or sent) by the same router for
the packet causal relationship, we look for the first packet received
(or sent) by the same router after at least 2*TDelay since packet A
was sent (or received). TDelay should be set to a value that is greater
than the variance in round trip time (RTT) and processing time (to
ensure accurate causal analysis) and lower than the re-transmission
timeout (to avoid spurious re-transmissions).

Using diverse network topologies to improve extensiveness.
To further improve our technique, we adopt diverse network topolo-
gies when running routing protocols. As we introduce different
network topologies, we alter network features such as the number
of routers, interfaces, and neighbors. Specifically, we experimented
with linear topologies with 2 or 5 routers and mesh topologies with
3 or 5 routers. In our experiments, we stopped seeing significant
changes in the packet causal relationships after considering these
four topologies, but additional topologies can be added to further
improve completeness.

3 PRELIMINARY RESULTS & FUTURE WORK

To evaluate the effectiveness of the technique, we apply it to the
FRRouting [2] and BIRD [1] implementations of OSPF. We run these
implementations in Docker containers connected by virtual links.
TDelay is introduced using the Pumba [3] chaos testing tool. We
set TDelay to 900 ms, because the reduction in the unobserved
packet causal relationships plateaued with these amount of delay.
Table 1 shows the computed packet causal relationships for packets

Xi Jiang and Aaron Gember-Jacobson

Table 1: Packet causal relationships: general types
FRR BIRD
Snd(1)[Snd(2)Snd(3)Snd(@)SndG)Snd(Dnd(@)[Snd(3)Snd@[Snd(5)]
Rev(1)] v v v v v v v
Rev@)| 7 | / | / 7

Rev(3) v

Rv@)| / | / |/ | L | / | / | 7

R / | /| 7 [/ | 7 | 7 [7 [7 [7]
(2) DB Description, (3) LS Update, (4) LS Request, (5) LS Acknowledge

(1) Hello,

v
v
v

Table 2: Packet causal relationships: greater sequence num-
ber in LSA for LSU and LSAck

FRR BIRD
Snd(LSU)[Snd(LSAck)[Snd(LSU)(Snd(LSAcK)|
Rev(LSU) with
greater LS-SN in LSA| 7 4 7 7
Rev(LSAck) with v
greater LS-SN in LSA

differentiated by OSPF packet type, where missing relationships are
represented with @values. Table 2 demonstrates the more specific
computed packet causal relationships: whether the sending (or re-
ceiving) of Link State Update (LSU) or Link State Acknowledgment
(LSAcKk) packets can trigger the sending (or receiving) of LSU or
LSAck packets with greater Link State Advertisement (LSA) se-
quence numbers (LS-SN). Note that in both experiments, although
the receive-send direction causal relationships are not shown, they
are completely consistent with the send-receive direction causal
relationships depicted in the tables.

We observe clear discrepancies between the two implementa-
tions which can be flagged as possible causes of non-interoperabilities.
For future work, we want to validate our black-box inferences by
examining the implementation source code. Furthermore, through
means such as packet injection, we want to verify whether (or what
fraction of) our flagged potential causes of non-interoperabilities
indeed lead to bugs. We also aim to scale our system to consider
more packet fields and other router features such as router states
during the packet causal relationship computations.

REFERENCES

[1] [n.d.]. The BIRD Internet Routing Daemon Project. https://bird.network.cz.

[2] [n.d.]. FRRouting Protocols. https://frrouting.org.

[3] [n.d.]. Pumba. https://github.com/alexei-led/pumba/.

[4] Silva Alexandra. 2021. Prognosis: Black-Box Analysis of Network Protocol
Implementations. (2021).

[5] Kenneth L. McMillan and Lenore D. Zuck. 2019. Formal specification and testing
of QUIC. In SIGCOMM.

[6] Madanlal Musuvathi and Dawson R. Engler. 2004. Model checking large network
protocol implementations. In NSDIL

[7] Madanlal Musuvathi, David Y. W. Park, Andy Chou, Dawson R. Engler, and
David L. Dill. 2003. CMC: a pragmatic approach to model checking real code.
ACM SIGOPS Operating Systems Review 36, SI (2003).

[8] Luis Pedrosa, Ari Fogel, Nupur Kothari, Ramesh Govindan, Ratul Mahajan, and
Todd Millstein. 2015. Analyzing protocol implementations for interoperability.
In 12th USENIX Symposium on Networked Systems Design and Implementation
(NSDI).

[9] Adi Sosnovich, Orna Grumberg, and Gabi Nakibly. 2013. Finding Security Vulner-
abilities in a Network Protocol Using Parameterized Systems. In 25th International
Conference on Computer Aided Verification (CAV).

[10] Adi Sosnovich, Orna Grumberg, and Gabi Nakibly. 2017. Formal Black-Box
Analysis of Routing Protocol Implementations. CoRR abs/1709.08096 (2017).
arXiv:1709.08096 http://arxiv.org/abs/1709.08096

Zuoning Yin, Matthew Caesar, and Yuanyuan Zhou. 2010. Towards understanding
bugs in open source router software. ACM SIGCOMM Computer Communication
Review 40, 3 (2010), 34-40.

Earl Zmijewski. [n.d.]. Reckless Driving on the Internet. ([n.d.]).
https://blogs.oracle.com/internetintelligence/reckless-driving-on-the-internet.

[11

[12

h
https://arxiv.org/abs/1709.08096
http://arxiv.org/abs/1709.08096
h

	Abstract
	1 Motivation
	2 Approach
	3 Preliminary Results & Future Work
	References

