
Non-interoperability Detection for Routing Protocol Implementations
Xi Jiang, Aaron Gember-Jacobson (Colgate University)

Routing protocol standards are expressed in 
natural language which may be abstract or 
ambiguous.

Different implementations of a routing protocol 
may embody different interpretations of the 
standard, leading to interoperability issues when 
used within/across routing domains.

Example: 2009 Supronet Incident [11]

Motivation
Non-interoperability Black-Box ApproachPrior Approaches

Approach
Basic Idea SolutionProblem

Evaluation
Experimental Setup Future WorkResults

We present a black-box technique for detecting 
interoperability issues between routing protocol 
implementations based on the packets routers 
send and receive. 

✓ Avoids the need to translate a protocol 
standard’s natural language into a formal 
model.

✓ Does not require access to implementations’ 
source code, which enables our technique to 
be applied to commercial protocol 
implementations.

We infer the correlation (i..e, packet causal 
relationship) between the sent (or received) 

packets to determine the set of expected 
responses.

We want to compute packet causal 
relationships that are both accurate (reflected 

packets are indeed causally related) and 
extensive (consider and analyze different 

networks scenarios). 

1.Configure a fixed delay (Tdelay) on all 
network interfaces to exclude non-relevant 
packets from packet causal relationships.
○ Only consider packets 

after at least 2*TDelay. 
○ TDelay should be more 

than the variance in 
round trip time (RTT) and 
processing time and 
less than the 
re-transmit timeout.

2.Use diverse 
topologies to 
improve extensiveness.
○ Linear topologies with 2 or 5 routers and mesh 

topologies with 3 or 5 routers

To evaluate the effectiveness of the technique, 
we apply it to the FRRouting [2] and BIRD [1] 

implementations of OSPF. 

We run these implementations in Docker 
containers connected by virtual links. 

TDelay is added using the Pumba [3] chaos 
testing tool. We set TDelay to 900 ms which is 
higher than the variance in the RTT and lower 

than the re-transmit timeout in both of the 
implementations.

●Validate our black-box inferences by 
examining the implementation source code. 

●Verify whether (or what fraction of) our flagged 
potential causes of non-interoperabilities 
indeed lead to bugs through packet injection.

●Scale our system to consider more packet 
fields and other router features.

Mikrotik Router Cisco Router

Forwards long AS path

Fail to handle long AS 
path, Reboot

Naive Approach:
After a packet 𝐴 is sent (or 

received) by a router, if 
packet 𝐵 is the first packet 

received (or sent) by the 
same router, then we 

assume there is a causal 
relationship between the 

sending (or receiving) of 𝐴 
and the receiving (or 

sending) of 𝐵.

￼￼

High frequency packet 
exchange and small time 

gap between packets often 
result in scenarios where a 

router receives multiple 
packets in chaotic order 
after sending a packet (or 
vice versa). This can lead 
to incorrect inferences of 

the packet causal 
relationships.

Correct inference Incorrect inference

Correct inference with TDelay

References

⇦ Inferred causal 
relationships for 
packets 
differentiated by 
OSPF packet type, 
where missing 
relationships are 
represented with ∅

⇧ More specific packet causal relationships: whether the 
sending (or receiving) of Link State Update (LSU) or Link 
State Acknowledgment (LSAck) packets can trigger the 
sending (or receiving) of LSU or LSAck packets with greater 
Link State Advertisement sequence numbers (LS-SN).

We observe clear discrepancies between the 
implementations which are flagged as possible 

causes of non-interoperability.

[1] The BIRD Internet Routing Daemon Project. https://bird.network.cz. 
[2] FRRouting Protocols. https://frrouting.org. 
[3] Pumba. https://github.com/alexei-led/pumba/. 
[4] Silva Alexandra. 2021. Prognosis: Black-Box Analysis of Network Protocol Implementations. 
[5] Kenneth L. McMillan and Lenore D. Zuck. 2019. Formal specification and testing of QUIC. In SIGCOMM. 
[6] Madanlal Musuvathi and Dawson R. Engler. 2004. Model checking large network protocol implementations. In NSDI. 
[7] Madanlal Musuvathi, David Y. W. Park, Andy Chou, Dawson R. Engler, and David L. Dill. 2003. CMC: a pragmatic approach to model 
checking real code. ACM SIGOPS Operating Systems Review 36, SI. 
[8] Luis Pedrosa, Ari Fogel, Nupur Kothari, Ramesh Govindan, Ratul Mahajan, and Todd Millstein. 2015. Analyzing protocol 
implementations for interoperability. In 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI). 
[9] Adi Sosnovich, Orna Grumberg, and Gabi Nakibly. 2013. Finding Security Vulnerabilities in a Network Protocol Using Parameterized 
Systems. In 25th International Conference on Computer Aided Verification (CAV). 
[10] Adi Sosnovich, Orna Grumberg, and Gabi Nakibly. 2017. Formal Black-Box Analysis of Routing Protocol Implementations. CoRR 
abs/1709.08096 (arXiv:1709.08096)
[11] Earl Zmijewski. Reckless Driving on the Internet. https://blogs.oracle.com/internetintelligence/reckless-driving-on-the-internet.

Standard Model

 Analyze 

Does not consider actual implementations. [9]

Implementation Model

 Compare 

Requires constructing a formal model that embodies the 
standard and does not elucidate differences between 
implementations. [4-7, 10]

Implementation A Implementation B

 Compare 

Utilizes symbolic execution which requires access to 
implementations’ source code. [8]


