
Symbolic Router Execution

Peng Zhang
Xi’an Jiaotong University

Dan Wang
Xi’an Jiaotong University

Aaron Gember-Jacobson
Colgate University

Abstract

Network verification often requires analyzing properties across

different spaces (header space, failure space, or their product) under

different failure models (deterministic and/or probabilistic). Exist-

ing verifiers efficiently cover the header or failure space, but not

both, and efficiently reason about deterministic or probabilistic fail-

ures, but not both. Consequently, no single verifier can support all

analyses that require different space coverage and failure models.

This paper introduces Symbolic Router Execution (SRE), a general

and scalable verification engine that supports various analyses. SRE

symbolically executes the network model to discover what we call

packet failure equivalence classes (PFECs), each of which charac-

terises a unique forwarding behavior across the product space of

headers and failures. SRE enables various optimizations during the

symbolic execution, while remaining agnostic of the failure model,

so it scales to the product space in a general way. By using BDDs

to encode symbolic headers and failures, various analyses reduce

to graph algorithms (e.g., shortest-path) on the BDDs. Our evalua-

tion using real and synthetic topologies show SRE achieves better

or comparable performance when checking reachability, mining

specifications, etc. compared to state-of-the-art methods.

CCS Concepts

• Computer systems organization→ Reliability.

Keywords

network verification, equivalence classes, symbolic execution

ACM Reference Format:

Peng Zhang, Dan Wang, and Aaron Gember-Jacobson. 2022. Symbolic

Router Execution. In ACM SIGCOMM 2022 Conference (SIGCOMM ’22),

August 22–26, 2022, Amsterdam, Netherlands. ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3544216.3544264

1 Introduction

Network verifiers enable operators to proactively reason about a

network’s forwarding behaviors to avoid potential problems. For

example, verifiers can compute all-pairs reachability for a specific

failure scenario to verify a planned router outage will not compro-

mise reachability [1]; analyze a specific prefix under probabilistic

link failures to verify a proposed configuration change directs the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9420-8/22/08. . . $15.00
https://doi.org/10.1145/3544216.3544264

traffic through a waypoint 99.9% of the time [21]; or examine all pre-

fixes under a bounded number of link failures to verify a proposed

configuration refactoring will not jeopardize security [22].

Such verification tasks require network verifiers to:

(1) Reason about a network’s behavior across a large header space

and/or failure space. For example, the header space can be as large

as 2104 when considering 5-tuples, and the failure space can be

as large as 2; when considering all possible combinations of link

failures in a network with ; links.

(2) Reason about a network’s behavior under different failure models.

For example, verifying a property holds under a bounded number

of failures (:) requires a deterministic failure model where each

node or link can either be up or down but the total number of

failures is bounded by : ; whereas verifying a property holds with

high probability (e.g., 99.9%) requires a probabilistic failure model

where nodes or links can fail according to some distribution.

To meet the first requirement, existing verifiers exploit similarity

across packet headers and failure scenarios. Some verifiers [6, 10, 11,

20, 27] divide the header space into packet equivalence classes (PECs),

such that headers belonging to the same PEC traverse the same

forwarding path under a specific failure scenario. Other verifiers [3,

5, 12–15, 21, 24, 26] divide the failure space into failure equivalence

classes (FECs), such that failure scenarios belonging to the same FEC

result in the same forwarding path for a specific source-destination

pair. Analyzing one packet from each PEC or one failure from each

FEC is sufficient to characterize the network’s behavior across the

entire header or failure space, respectively.

However, due to the dual influence of headers and failures on

forwarding path selection, PECs may not be the same across failure

scenarios and FECs may not be the same across headers. Con-

sequently, verifiers leveraging PECs must independently analyze

every failure scenario of interest, and verifiers leveraging FECs

must independently analyze every prefix of interest. This causes

the verifiers to scale poorly to the product space of headers and

failures (§8).

To meet the second requirement, different verifiers target dif-

ferent failure models and use different optimizations to efficiently

explore the failure space. For example, checking a property under

a deterministic failure model only requires exploring the boundary

of failure scenarios—e.g., the minimum number of failures (:) that

violate the property; verifiers do not need to consider scenarios

with more than : failures, even if the property is satisfied in these

scenarios, and many verifiers are optimized to identify the bound-

ary without evaluating every scenario with fewer than : failures

[3, 5, 12–14, 24, 26]. On the other hand, checking a property under a

probabilistic failure model requires exploring every failure scenario,

and summing the probabilities of scenarios that satisfy the property;

verifiers are optimized to explore the most likely failure scenarios

first, and stop exploring when an acceptable confidence threshold is

reached [15, 21]. Consequently, verifiers designed for deterministic

336

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Peng Zhang, Dan Wang, and Aaron Gember-Jacobson

failure models are not amenable to probabilistic failures, and veri-

fiers designed for probabilistic failure models are inefficient when

applied to deterministic failures.

In summary, existing verifiers lack scalability to reason about the

product space of headers and failures, and generality to efficiently

handle both deterministic and probabilistic failure models. The lack

of scalability is due to verifiers not jointly reasoning about headers

and failures to explore their dual impact on forwarding behaviors.

The lack of generality stems from verifiers binding to the failure

model too early (i.e., when the network model is created).

This paper introduces Symbolic Router Execution (SRE), a general

and scalable verification engine that can explore the product space

of headers and failures while remaining agnostic of the failure

model. In a nutshell, SRE applies a variant of symbolic execution

tailored to configuration verification, by viewing the network as a

program (model) consisting of a control plane and a data plane, and

making headers and failures symbolic when executing the model.

WhySRE is scalable. First, SRE symbolically executes the network

control and data planes to account for the correlation among head-

ers and failures and uncover Packet Failure Equivalence Classes

(PFECs)—header and failure combinations for which a specific for-

warding path is used. SRE executes a control plane model with

symbolic failures (i.e., link states) to derive the FEC for each route,

and SRE executes a data plane model where forwarding rules in-

clude FECs as another matching field (in addition to IP prefix) so

FECs “carry over” to the data plane. In this way, failures and headers

jointly determine a set of forwarding paths, each of which corre-

sponds to an equivalence class in the product space (i.e., PFECs).

Second, SRE significantly reduces computations by: (8) using Bi-

nary Decision Diagrams (BDDs) [4] to represent symbolic headers

and failures, and (88) applying three optimizations—route pruning,

prefix pruning, and abstract interpretation.

Why SRE is general. First, PFECs capture all possible forward-

ing paths of all packets under all possible failures, such that any

property related to packets and their forwarding paths—e.g., reach-

ability, waypointing, isolation, or load balancing—can be analyzed.

Second, SRE is agnostic of the failure model when symbolically

executing the network model. The failure model is only specified

when analyzing properties. Delaying the binding to failure model

allows SRE to efficiently support deterministic and probabilistic

failure models in a general way. Interestingly, using BDDs also

makes SRE more general: we can analyze properties through graph

algorithms. For example, analyzing a property’s failure tolerance

reduces to computing the shortest path on a BDD, and analyzing the

probability of a property holding reduces to computing a weighted

sum on a BDD.

In summary, this paper makes the following contributions:

• We introduce symbolic router execution (SRE), a configu-

ration verification engine that scales to the product space

of headers and failures, and generalizes to different failure

models.

• We design and implement SRE and apply various optimiza-

tions to make it scalable and fast. We implement three types

of analyses on top of SRE to demonstrate its generality in

supporting different types of analyses.

Equivalence classes
PECs FECs

F
a
il
u
re

m
o
d
e
l

D
e
te
rm

.

Batfish [11], Plankton [20],
ERA [10], ShapeShifter [6],
DNA [27], Config2Spec [8]

Config2Spec [8], ARC [12],
Tiramisu [3], Hoyan [26],

Minesweeper [5], Origami [13],
Bagpipe [24], NV [14]

P
ro
b
.

NetDice [21], ProbNV [15]

Table 1: Equivalence classes and failure models supported

by existing network configuration verifiers

• We use real and synthetic topologies to show SRE achieves

better or comparable performance to state-of-the-art meth-

ods when checking properties, mining specifications, com-

puting probabilities, etc.

2 Motivation

In this section, we discuss common network management tasks

(§2.1), and the scalability and generality limitations of existing

network verifiers with respect to these tasks (§2.2).

2.1 Tasks

Some common network management tasks require reasoning about

a network’s behavior across a large product space of headers and

failures under both deterministic and probabilistic failure models.

For example:

Verifying changes. Verifying a configuration change has the de-

sired effect (e.g., restricting access to a prefix) only requires analyz-

ing the targeted header space(s). However, checking for unintended

side-effects is harder, because changes may impact seemingly un-

related header spaces: e.g., augmenting a route filter with a high

priority rule that blocks routes with certain community tags may

overshadow a rule that permits routes for certain prefixes. Conse-

quently, verifying a change is side-effect free requires checking all

(manually-specified or mined) requirements, which often span a

large portion of the header and failure spaces [7, 8] and include both

deterministic and probabilistic failure tolerances [21].

Mining network requirements.Many configuration verifiers as-

sume operators can clearly specify what to verify—e.g., a router

should (not) be able to reach a certain prefix. However, network

requirements are rarely explicitly documented. Consequently, re-

searchers have developed network specification miners [7, 8, 17],

which check several types of forwarding properties (e.g., reachabil-

ity, isolation, and waypoint traversals) for the entire header space

under a large range of failure scenarios (e.g. all single- and dual-link

failures), to mine specific requirements implied by router configura-

tions. It is also desirable to generalize these requirements to groups

of prefixes [17] and soft failure tolerance levels (e.g., “four 9s” avail-

ability) [21], which requires reasoning about both deterministic and

probabilistic failures.

Some common management tasks may not require reasoning

about the product space of headers and failures or multiple failure

models, but it is desirable to construct a "one-size-fits-all" verifier

that accommodates these tasks as well.

2.2 Related Work

Existing verifiers lack the scalability and generality required to

conduct that aforementioned tasks which reason about a network’s

behavior across a large product space of headers and failures under

337

Symbolic Router Execution SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

both deterministic and probabilistic failure models. As summarized

in Table 1, existing verifiers compute either packet equivalence

classes (PECs) or failure equivalence classes (FECs)—which do not

extend to the product space—and accommodate either deterministic

or probabilistic failure models—which require different explorations

of the failure space and different optimizations.

PECs or FECs. PECs and FECs allow verifiers to exploit similarity

in network forwarding behaviors across packet headers or failure

scenarios, respectively. Batfish [11] and ERA [10] implicitly com-

pute PECs, whereas Plankton [20] and DNA [27] explicitly compute

PECs. Conversely, FECs are implicitly computed by: NetDice [21],

which identifies “cold” links whose failure does not impact for-

warding paths for a specific source-destination pair; Hoyan [26]

and ProbNV [15], which identify link conditions that influence the

existence/selection of a specific route; ARC [12] and Tiramisu [3],

which compute path characteristics that are invariant across fail-

ures for specific source-destination pairs; and Minesweeper [5] and

Bagpipe [24], which rely on an SMT solver’s ability to learn equiv-

alences in a domain-agnostic manner. Analyzing one packet from

each PEC or one failure from each FEC is sufficient to characterize

the network’s behavior across the entire header or failure space,

respectively.

However, since PECs and FECs may differ across failure sce-

narios and headers, respectively, verifiers leveraging PECs must

independently analyze every failure scenario, and verifiers leverag-

ing FECs must independently analyze every prefix. Thus, existing

verifiers scale poorly to the product space of headers and failures

(§8). The trade-off is illustrated by Config2Spec [8], which dynami-

cally switches between a verifier that uses PECs [11] and a verifier

that uses FECs [5] to reduce the work required to cover the product

space.

Deterministic or probabilistic.Verifiers designed to reason about

a bounded number of failures (:) are not directly amenable to

probabilistic failures, and vice versa. For example, ARC [12] and

Tiramisu [3] model a network’s control plane as a graph and com-

pute the min-cut to determine the minimum number of simulta-

neous link failures (:) under which a property (e.g., reachability)

does not hold. However, they cannot compute the probability of

properties because they do not consider link failures that exceed :

but also preserve the property. On the other hand, NetDice [21] ex-

plores all failure scenarios by iteratively failing links and checking

whether the property holds (until reaching a certain level of confi-

dence in the probability a property holds), and applies a customized

optimization to reduce the search space. However, exploring all

failure scenarios is expensive and unnecessary when considering a

bounded number of deterministic failures.

3 Overview

SRE is a general and scalable network verification engine which

supports various analyses that require reasoning about a network’s

forwarding behavior across a large space of headers and failures

and various failure models. In the following, we present the basic

idea of SRE and show the workflow of SRE with an example.

3.1 Basic Idea

SRE is inspired by symbolic execution and its application in network

verification.

Symbolic execution of programs. Symbolic execution [18] is a

way to abstractly execute a program by making the inputs symbolic.

When the symbolic executor encounters a conditional branch (e.g.,

if-else statement), it executes each branch and updates the path

condition, which is a set of constraints encoding the branching deci-

sions during the execution. As a result, symbolic execution explores

each execution path at most once, and can discover equivalence

classes of inputs (encoded by the path conditions). Generally, sym-

bolic execution suffers from path explosion, and leverages many

optimizations to mitigate it.

Symbolic execution of network control plane or data plane.

Several network verifiers apply symbolic execution. HSA [16] can

be viewed as symbolic execution over the data plane: it forwards

packets with symbolic headers to discover PECs. Hoyan [26] can be

viewed as symbolic execution over the control plane: it simulates the

control plane with symbolic link states to discover FECs. However,

as discussed earlier (§2.2), PECs and FECs do not extend to the

product space of headers and failures.

Symbolic execution of network control plane and data plane.

SRE symbolically executes the network control and data planes to

exploit the correlation in forwarding behaviors among headers and

failures. First, SRE executes a control plane model, where failures

(i.e., link states) are symbolic, to derive the FEC for each route. Then

SRE executes a data plane model, where both headers and failures

are symbolic. When symbolically executing the data plane, SRE

makes FECs another matching field (in addition to IP prefix) in

forwarding rules, so that the FECs discovered during control plane

execution “carry over” to the data plane. In other words, during

data plane execution, failure scenarios and packet headers jointly

determine a set of forwarding paths, each of which corresponds

to an equivalence class in the product space, which we call packet

failure equivalence classes (PFECs).

3.2 Workflow of SRE

Anexample network. Figure 1(a) shows an example networkwith

three routers (�, �, and �) running BGP. Router � is connected to

the network 128.0.0.0/1, and announces this prefix, as well as a

longer prefix 192.0.0.0/2. The operator has a policy that all traffic to

192.0.0.0/2 should go through router �. Consequently, the operator

configures port 2 on router� with: (1) an outbound route-map that

prevents 192.0.0.0/2 from being advertised to�, and (2) an inbound

ACL that blocks packets for 192.0.0.0/2 arriving from �.

At a high level, SRE consists of two steps: (1) symbolic route

computation, and (2) symbolic packet forwarding. We use the above

example to walk through these two steps.

(1) Symbolic route computation (SRC) takes configurations and

topology as input, and computes symbolic RIBs, one for each router.

Unlike a concrete RIB which maintains the current best routes, a

symbolic RIB maintains all routes that may become the best route

when links and/or nodes fail. SRC represents the state of each link

with a boolean variable (1=up, 0=down),1 and associates a topology

1Node failures are modeled as a combination of link failures.

338

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Peng Zhang, Dan Wang, and Aaron Gember-Jacobson

Symbolic

Route

Computation

Symbolic

Packet

Forwarding

The SRE System

Symbolic RIBs Packet Failure
Equivalence Classes

(PFECs)

(b) The workflow of SRE

A

B

Networks

192.0.0.0/2

128.0.0.0/1

C

outbound route-map

filter 192.0.0.0/2
inbound ACL

deny 192.0.0.0/2

1
2

3

2

3

2

3

1

1

(a) A walkthrough example

RIB@A

192/2, lBClAB, B

128/1, lAC, C

128/1, ¬lAClBClAB, B

PFECs@C

(p1¬p2lAC), [A,C]

(p1p2lBClAB)@

(p1¬p2¬lAClBClAB), [A,B,C]

lAB

lBC

lAC

10

lAC

lAB

lBC

lAC

10

lAC

Prob=0.981

MaxFailure=1

1 0

0.1 0.9

Topology BDD
for 128/2

(c) Analyzing reachability from A to C

Figure 1: The walkthrough example, the workflow of SRE, and property analysis with SRE.

condition—a boolean formula consisting of these variables—with

each route in the symbolic RIB to encode the failure scenarios under

which the route becomes the best route.

Figure 1(b) shows the symbolic RIB at router �. For prefix 128/1,

there are two best routes (second and third entries). The route with

next hop � and topology condition ;�� becomes the best route if

;�� is up, while the route with next hop � and topology condition

¬;��;��;�� becomes the best route if ;�� is down but both ;�� and

;�� are up.

To generate symbolic RIBs, SRE initializes the topology con-

dition of originated routes to symbolic value True (representing

any combination of link failures). Then, SRE simulates the control

plane, and during the simulation constrains the topology condition

of each route. Unlike Hoyan [26] which encodes the topology con-

dition using SAT constraints, SRE uses Binary Decision Diagrams

(BDDs) [4], thus avoiding topology condition explosion for large

networks (§8).

BinaryDecisionDiagram (BDD).As shown in Figure 1(c), a BDD

is a rooted, directed acyclic graph (DAG) with two terminal nodes

0 and 1, and several (non-terminal) decision nodes. Each decision

node corresponds to a boolean variable (;�� , ;�� , etc.), and has two

outgoing edges: a dashed edge and a solid edge, representing the

boolean variable being assigned False and True, respectively. For

example, in this BDD, the root node represents variable ;�� ; if ;�� =

False, we follow the dashed edge to another node representing

variable ;�� , and if ;�� = True, we follow the solid edge to terminal

node 1. A path from the root to the terminal 1 represents a truth

assignment, e.g., ;�� = False, ;�� = True in this example.

(2) Symbolic packet forwarding (SPF) takes the symbolic RIBs

as input, forwards symbolic packets through the network, and

generates a set of PFECs. Each PFEC consists of all packet-failure

tuples for which a forwarding path is used. Figure 1(b) shows the

two PFECs whose forwarding paths are from� to� . The first PFEC

(?1¬?2;�� , [�,�]) represents packets 128/2 and failure scenarios

where ;�� is up (other links can be up or down) for which the path

�→� is used. Similarly, the second PFEC represents packets and

failures for which the path �→�→� is used.

To generate PFECs, SRE converts the symbolic RIBs into symbolic

FIBs, where each FIB entry matches both the prefix and the topology

condition of the corresponding route. Then, SPF augments packet

headers with a topology condition, initializes the augmented header

with a symbolic value of True (encoding all possible packet-failure

tuples), and injects it at each router in the network.When a symbolic

packet matches a FIB entry, SRE constrains the topology condition

and destination IP of the packet with the topology condition and

prefix, respectively, of the FIB entry.

Through SRC and SPF, SRE jointly explores the header space and

failure space, in a way that is agnostic of the specific verification

tasks (e.g., checking failure tolerance). This allows SRE to efficiently

support a variety of analyses.

3.3 Property Analysis with SRE

SRE enables three types of analyses over various properties (e.g.,

reachability, waypointing, isolation, load balancing):

(1) failure tolerance: compute the maximum number of failures

that a property can tolerate;

(2) probabilistic: estimate the probability that a property holds

under probabilistic failures;

(3) differential: check for differences in failure tolerance/proba-

bility of a property after a configuration change.

While existing verifiers are targeted at one type of analysis, SRE

enables all of these analyses based on the abstraction of PFECs. The

reason is that SRE is agnostic of the analyses and outputs PFECs

which collectively represent all possible forwarding behaviors (i.e.,

end-to-end forwarding paths), as well as the packets and failures for

each behavior. Moreover, since each PFEC is encoded with a BDD

(a graph), SRE allows operators to perform the analyses directly on

top of BDDs with graph algorithms, agnostic of complex network

semantics (e.g., routing protocols).

We use reachability as an example to show how computing fail-

ure tolerance and probabilities reduce to standard graph problems

on top of BDDs. §6 discusses more analyses.

Example 1: Computing failure tolerance. Suppose operators

need to know the failure tolerance for reachability of packets 128/2

from � to � . There are two PFECs at � satisfying the property,

one traversing �→� , and the other traversing �→�→� . We can

compute a disjunction of these two PFECs, and extract the sub-BDD

encoding the failures—which we call a topology BDD—as shown in

Figure 1(c). In this topology BDD, the minimum number of dashed

edges to the terminal node 0 is two, which corresponds to the

minimum number of failures that violate the reachability property.

That is, the maximum number of failures the reachability of packets

128/2 from� to� can tolerate is one less than the minimum number

(2 − 1 = 1). Therefore, the problem of computing failure tolerance

reduces to the problem of finding the shortest path: assign weight 1 to

dashed edges and weight 0 to solid edges; compute the shortest path

length : from the root node to terminal node 0; the failure tolerance

is : − 1.

339

Symbolic Router Execution SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

Example 2: Computing probabilities. Suppose operators instead

need to know the probability for reachability of packets 128/2 from

� to � . Different from computing failure tolerance, which only

cares about a failure scenario where the property does not hold

with the minimum number of link failures, computing probability

requires finding all failure scenarios where the property holds, and

summing up their probabilities. In the topology BDD, each truth

assignment (a path from the root to the terminal node 1) represents

a set of failure scenarios where the property holds. Therefore, the

problem of computing probability reduces to the problem of finding

all paths to a node on a graph, and computing a weighted sum of

these paths. For illustration purpose, assume each link fails inde-

pendently with probability ? (see §6 for details on dependent link

failures or node failures), and assign weight ? to dashed edges,

weight (1− ?) to solid edges, weights 0 and 1 to the terminal nodes

0 and 1, respectively. Then, the probability is the weight of the root

node, which can be computed recursively from the terminal node

1, according to: the weight of each node is the weighted sum of its

two child nodes. In this example, we can easily see the probability

is 0.9 ∗ (0.9 + 0.1 ∗ 0.9) + 0.1 ∗ 0.9 = 0.981.

4 Symbolic Route Computation

This step symbolically simulates the control plane to generate a

symbolic RIB for each router. Each symbolic RIB consists of all pos-

sible routes that can materialize (i.e., become the best route) when

links and/or nodes fail, and the corresponding failure scenarios.

4.1 Defining Symbolic Route

Before introducing symbolic routes, we first define link variables.

For each link G in the network, its link variable is defined as boolean

variable ;G , such that ;G = 1(True)/0(False) means the link G is

up/down, respectively. A symbolic route is a 2-tuple (A>DC4, C2),

where: A>DC4 is a concrete route for a specific protocol (e.g., OSPF

and BGP) specifying the prefix, the next hop, and other protocol-

specific attributes (e.g., AS Path); and C2 , which stands for topology

condition, is a predicate over link variables specifying the failure

scenarios when A>DC4 becomes the best route.

Taking Figure 2(b) as an example,�will receive a route for prefix

128.0.0.0/1 from� , if link�� is up. Thus, SRE updates the topology

condition of this route at router � to ;�� , where ;�� is a boolean

variable denoting the state of link �� , i.e., ;�� = 1 or 0 if link �� is

up or down, respectively.

SRE uses Binary Decision Diagrams (BDDs [9]) to encode topol-

ogy conditions. Compared to SAT constraints, BDDs concisely en-

code boolean formulas and efficiently support conjunctions, dis-

junctions, and negations. Moreover, using BDDs allows SRE to

support various analyses using graph algorithms (§6).

4.2 Computing Symbolic Routes

SRE computes symbolic routes by executing a control plane model,

where each router repeatedly executes three steps: (1) import routes

from neighboring routers; (2) rank all imported routes with existing

routes and install the best routes into its RIB; and (3) export the

best routes to neighboring routers. The execution terminates when

the RIBs of routers do not change (i.e., a fixed point is reached).

Importing Routes. Initially, each router imports all routes de-

clared in the configurations. Each such route has a C2 = True. Dur-

ing recursive route computation, each router imports the routes

exported (advertised) by neighboring routers, and filters or modi-

fies routes according to routing policies. During this process, the

topology condition is unchanged.

Ranking Routes.When a router receives multiple routes for the

same prefix, it ranks these routes according to their priorities,

and updates their topology conditions. Suppose there are = routes

A1, A2, · · · , A= with decreasing priority. The topology condition of

A: , denoted as A: .C2 , is updated by negating the topology conditions

of all higher-priority routes, i.e., A: .C2 = (
∧

8<: (¬A8 .C2)) ∧ A: .C2 .

For example, in Figure 2(c), router � receives another route A

for 128.0.0.0/1 from router �, which has a topology condition of

A .C2 = ;��;�� . Assuming router � prefers routes with the shortest

path, � will rank A lower than the one directly received from � ,

whose topology condition is ;�� . � updates A .C2 = ¬;��;��;�� .

Exporting Routes. Each router exports to its neighbors the routes

whose topology conditions are not False. The routes will first be

filtered/modified according to the routing polices. For example, in

Figure 2(b), router � filters the route 192.0.0.0/2 to be exported to

router � according to the route map. For each route A exported by

router ' to its neighboring router # , A .C2 is updated to A .C2 ∧ ;'# ,

where ;'# is the link between ' and # .

Supporting multiple protocols. When there are multiple proto-

cols (BGP, OSPF, static), SRE ranks routes first according to the

administrative distance of their protocols, and then considers the

protocol-specific priorities. When there are route dependencies—

e.g., iBGP relies on OSPF to establish neighbor relationships—SRE

will first compute the topology conditions for data plane reachabil-

ity among iBGP peers (see §5), and then use the conditions as the

link conditions among iBGP peers. That is, SRE views the connec-

tions among iBGP as virtual links whose conditions are computed

based on data plane reachability analysis of OSPF.

Supporting route aggregation. For BGP, a router can use route

aggregation to aggregate multiple routes of specific prefixes into a

single route of summarizing prefix. When at least one route with a

specific prefix is received, the aggregated route will be generated

and advertised instead of the received route. This can introduce

correlations among routes of different prefixes. It is easy to see that

the link condition for the aggregated route is the disjunction of link

conditions of all received routes whose prefixes are more specific.

Supporting multi-path routing.When multi-path routing (e.g.,

ECMP) is enabled, multiple routes for the same prefix may have the

same priority, and these routes should all be selected as the best

route. SRE realizes this by storing all routes for the same prefix in

a two-dimensional list: each entry of the two-dimensional list is a

list of routes with the same priority. When updating the topology

condition of a route, SRE only negates the topology conditions of

routes belonging to lists whose priorities are higher than the route.

Handling new higher-priority routes. A critical issue is dealing

with new higher-priority routes. Specifically, when ' imports a

route whose priority is higher than some existing routes in its

RIB, the topology conditions of these lower-priority routes become

obsolete, and ' should withdraw and re-advertise these routes.

340

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Peng Zhang, Dan Wang, and Aaron Gember-Jacobson

A

B

Networks

192.0.0.0/2

128.0.0.0/1

C

outbound route-map

filter 192.0.0.0/2

inbound ACL

deny 192.0.0.0/2

1
2

3

2

3

2

3

1

1

(a) A walkthrough example

A

B

C
1

2

3

2

3

2

3

1

1

128/1
192/2
128/1
192/2

192.0.0.0/2, lAC, C

128.0.0.0/1, lAC, C

192.0.0.0/2, lBC, C

128.0.0.0/1, lBC, C

A

B

C
1

2

3

2

3

2

3

1

1

192.0.0.0/2, lBC, C

128.0.0.0/1, lBC, C

128.0.0.0/1, ¬lBClAClAB, A

192.0.0.0/2, lBClAB, B

128.0.0.0/1, lAC, C

128.0.0.0/1, ¬lAClBClAB, B

(b) Route propagation #1 (c) Router propagation #2

128/1
192/2
128/1
192/2

Figure 2: The process of symbolic route computation.

This can trigger cascaded updates at all routers importing those

lower-priority routes [26]. To be more efficient when handling

new higher-priority routes, SRE only re-advertises lower-priority

routes whose topology conditions change, without withdrawing

any routes. To achieve this, SRE uses two topology conditions for

each route: C28= which represents the topology condition when

the route is imported, and C2A81 which represents the topology

condition when the route is inserted in to the RIB. When a set

of routes are imported by a router, SRE will re-compute C2A81 for

each route A: whose priorities are equal or lower than any newly

inserted routes, according to:

A: .C2
A81

= (
∧

1≤8≤:−1

(¬A8 .C2
8=)) ∧ A: .C2

8= (1)

If A: .C2
A81 is changed, we advertise it to all neighbors of '. Each

advertised route A ′
:
will have A ′

:
.C2A81 = False, and A ′

:
.C28= =

A: .C2
A81 ∧ ; , where ; is the variable of the link connected to the

neighbor. The algorithm for computing the symbolic RIBs can be

found in Appendix A.

5 Symbolic Packet Forwarding

5.1 Defining Symbolic Packets

SRE augments packet headers with a topology condition, which

captures the failure scenarios under which the packet is forwarded.

Suppose the original packet header has = bits (e.g., = = 104 for 5

tuple), and the network has< links; SRE uses a bit vector of length

(= +<) for the packet header. SRE symbolically executes the data

plane by making the packet header symbolic and forwarding it

through the network.

5.2 Generating symbolic FIBs

For each router, SRE generates a symbolic FIB, which is an or-

dered list of forwarding rules. Each forwarding rule is a 2-tuple

(<0C2ℎ, ?>AC), where<0C2ℎ is a predicate (boolean formula) over

packet headers and failure scenarios. For example, for symbolic

route (192/2, ;��;��, �) at router � (Figure 3(a)), we will generate

a forwarding rule (?1?2;��;��, ?>AC3), where ?1, ?2, . . . , ?32 are

boolean variables for IP addresses (from the highest bit to the low-

est bit), ;�� is a boolean variable for link ��, and port 3 is the

port (interface) connected to router � (Figure 3(b)). Without loss

of generality, we assume forwarding rules are ordered by prefix

length (longest prefix has highest priority). For rules with the same

prefix length, the priority is determined by the priority of their

corresponding routes.

5.3 Computing predicates

After generating symbolic FIBs, we can forward symbolic packets

through the network by matching forwarding rules in the FIBs.

Each rule can be seen as a branch statement (e.g., if-then-else) in

computer programs. However, each router often has a large number

of rules, making the matching very inefficient. Therefore, we adopt

the approach of pre-computing port predicates [25]. A port predicate

is a boolean formula encoding the set of packets forwarded to a

specific port (forwarding predicates), or allowed by a specific port

(ACL predicates). Since there are a relatively small number of ports

at each router (compared to the number of rules), matching based

on port predicates will be more efficient.

Forwarding predicates. The forwarding predicate of a port is

computed as a disjunction of the “effective” match fields of all rules

which forward to that port. Here, “effective” means the match fields

that are not overridden by higher-priority rules. For example, the ef-

fective match fields for the second rule ?1;�� in the symbolic FIB of

router� are ?1;��¬(?1?2;��;��) = ?1?2;��¬(;��;��)∨?1¬?2;�� ,

as shown in Figure 3(b). Here, the first term is for 192/2, which will

match both the first and second rule. According to the priorities,

the second rule will be matched only when the first rule is not

matched, i.e., when either ;�� or ;�� is down. Since only the second

rule forwards to port 2, then the forwarding predicate of port 2 is

the effective match fields of the second rule. For another example,

the port predicate for port 3 can be computed as a disjunction of

the “effective” match fields of the first and third rules.

ACL predicates. Each port may have ACLs filtering inbound or

outbound traffic. Therefore, we compute inbound and outbound

ACL predicates for each port. The computation is similar to for-

warding predicates. Returning to our example in Figure 3(b), router

� has an ACL at port 2 filtering inbound packets for prefix 192/2.

The inbound ACL predicate of port 2 is computed as ¬(?1?2).

5.4 Forwarding packets

After computing predicates, we construct a symbolic packet match-

ing all packet headers and failure scenarios (a logical True over

header and link variables), and inject it at each router of the net-

work. For each port of the router, we replicate the symbolic packet,

and let it traverse the port. Suppose a port has a forwarding pred-

icate %
5 F3
1 , an outbound ACL predicate %>DC1 , and is connected

to another port with an inbound ACL predicate %8=2 , through a

link ; , then we constrain the symbolic packet ?:C by computing:

?:C ← ?:C ∧ %
5 F3
1 ∧ %>DC1 ∧ ; ∧ %8=2 . If ?:C ≠ False, then it arrives

341

Symbolic Router Execution SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

(a) Symbolic FIB

p1p2lBClAB, port 3

p1lAC, port 2

p1¬lAClBClAB, port 3
A

B

C
1

2

3

2

3

2

3

1

1

(c) Symbolic forwarding starting from Router A

(p1p2lAC¬(lBClAB))@

(p1¬p2lAC)
A

B

C
1

2

3

2

3

2

3

1

1

(b) Port Predicates

(p1p2lAC¬(lBClAB))@

(p1¬p2lAC)

(p1p2lBClAB)@

(p1¬p2¬lAClBClAB) (p1p2lBClAB)@

(p1¬p2¬lAClBClAB)

(p1p2lBClAB)@

(p1¬p2¬lAClBClAB)

(p1p2lBClAB)@

(p1¬p2¬lAClBClAB), A:B:C

(p1¬p2lAC), A:C
A

B

C
1

2

3

2

3

2

3

1

1

p1lBC

p1¬lBClAClABp1p2lBC, port 2

p1lBC, port 2

p1¬lBClAClAB, port 3

In-ACL: ¬(p1p2)

Figure 3: The process of symbolic packet forwarding.

at the port of the next-hop router. This process continues until

?:C = False, or ?:C reaches a port that is not connected to other

routers.

Figure 3(c) shows the above process for the running example,

where a symbolic packet is injected at router �, and reaches router

� (port 1) through �→� and �→�→� .

Packet Failure Equivalence Class. Each symbolic packet reach-

ing an edge port encodes the set of packet-failure tuples for a

specific path, and is termed a packet failure equivalence class (PFEC).

Formally, we have the following definition.
Definition 1. For a given router ', a failure scenario 5 , and a

packet ? , let �>AF0A3
5
'
(?) be the forwarding path of packet ? starting

from router ', under the failure scenario 5 . Two tuples (?1, 5 1) and

(?2, 5 2) belong to the same packet failure equivalence class (PFEC)

with respect to ', if and only if �>AF0A3
5 1
'
(?1) = �>AF0A3

5 2
'
(?2).

As shown in Figure 3(c), for router �, there are two PFECs,

one with forwarding path �→ � , and the other with forwarding

path � → � → � . All packet-failure tuples where packets have

destination IP belonging to 128/1 and failure scenarios satisfy link

�� is up belong to the first PFEC.

6 Forwarding Property Analysis

This section shows how to analyze properties based on the PFECs.

We first define the properties that we consider, then give the work-

flow for analyzing these properties, and show how to perform three

types of analyses over the properties.

6.1 Properties

We consider the following properties.

• Reachability '402ℎ(B, 3, ?): packets in ? sent from B can

reach 3 .

• Waypointing,0~?>8=C (B, 3,F, ?): packets in ? sent from

B can reach 3 , traversing waypointF .

• Isolation �B>;0C8>=(B, 3, ?): packets in ? sent from B can

never reach 3 .

• Load Balancing !>0310;0=24 (B, 3, ?, =): packets in ? sent

from B can reach 3 , load balanced among = routes.

6.2 Workflow

Property analysis using SRE generally consists of three steps.

(1) Computing propertyBDD. First, given a property, an analyzer

uses SRE to compute a property BDD, which is a BDD encoding

all PFECs that satisfy the property (Lines 7-12 of Algorithm 2 in

Appendix C). As shown in Figure 3(c), there are two PFECs that

p1

p2

lAB lAB

lBC

lAC

10

lAC

lAB

lBC

10

lAB

lBC

lAC

10

lAC

Property BDD for Reach(A,C,*)

Topology BDD

for 128/2

Topology BDD

for 192/2

Figure 4: Analysis of reachability property.

satisfy '402ℎ(�,�, ∗): one following �→ � , and the other follow-

ing �→ � → � . The left of Figure 4 shows the property BDD for

'402ℎ(�,�, ∗).

(2) Extracting topology BDDs and packet BDDs. A property

BDD can consist of multiple sets of packet headers each having a

different topology condition. For example, as shown on the left of

Figure 4, the solid and dashed lines starting from ?2 lead to differ-

ent nodes for link variable ;�� . This means packets ?1?2 (192/2)

and packets ?1¬?2 (128/2) have different topology conditions. To

analyze packets with different topology conditions, the analyzer

uses the Extract function (Lines 13-18 of Algorithm 2 in Appendix

C) to decouple the property BDD into a set of (C>?>8 , ?:C8) tuples,

where C>?>8 (topology BDD) and ?:C8 (packet BDD) are sub-BDDs

of the property BDD, such that ∨8 (C>?>8 ∧?:C8) equals the property

BDD. The right of Figure 4 shows two topology BDDs for packet

BDDs of 192/2 and 128/2.

(3) Analyzing topologyBDDswith graph algorithms.After de-

coupling the property BDD into packet BDDs and topology BDDs,

analyses can be performed by running graph algorithms on the

topology BDDs. The analyses that SRE support include: failure tol-

erance analysis (§6.3), probabilistic analysis (§6.4), and differential

analysis (§6.5).

6.3 Failure tolerance analysis

Definition 2. The link failure tolerance for a property ?A>?

is defined as the maximum value of : satisfying that ?A>? always

holds when no more than : links fail simultaneously.

342

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Peng Zhang, Dan Wang, and Aaron Gember-Jacobson

We use !�) (?A>?) to denote the link failure tolerance of ?A>? .

!�) (?A>?) = 0 means ?A>? holds when all links are up, but is

violated if some single link fails; !�) (?A>?) = −1 means ?A>? does

not hold even all links are up.

We show how to compute link failure tolerance for three types

of properties: reachability, waypointing, and isolation.

Reachability property'402ℎ(B, 3, ∗). Regarding reachability prop-

erty, we have the following theorem.

Theorem 1. Let (C>?>, ?:C) be a topology BDD and packet BDD

tuple extracted from the property BDD of'402ℎ(B, 3, ∗). Assign weight

0/1 to solid/dashed edges of C>?> . Then, we have:!�) ('402ℎ(B, 3, ?:C)) =

ShortestPath(C>?>, 0) −1, where ShortestPath(=, 0) is the length

of the shortest path from node = to terminal node 0.

The proof of Theorem 1 can be found in Appendix B.

Returning to our example, the top right of Figure 4 shows that

for packets in 192/2, the shortest path length from root to terminal

node 0 is 1. This means that to violate the reachability, at least one

link should be failed, i.e., the link failure tolerance of the reachability

property is 0. On the other hand, the bottom right of Figure 4 shows

that for packets in 128/2, the shortest path length is 2, meaning that

the link failure tolerance of the reachability property is 1. Algorithm

2 in Appendix C summarizes the process to compute link failure

tolerance for reachability properties.

Other properties. The process of computing LFT for other prop-

erties, including waypointing, isolation, etc., is almost the same.

The only difference is the computation of property BDD (Line 10

of Algorithm 2 in Appendix C). For example, the property BDD for

waypointing property should be the disjunction of all PFECs whose

forwarding path traverseF , in addition to being sent from B to 3 .

6.4 Probabilistic analysis

SRE supports probabilistic analysis: given a property ?A>? , comput-

ing the probability that ?A>? holds, denoted as %A>1 (?A>?). In the

following, we show how to compute probability for the reachability

property '402ℎ(B, 3, ∗); for other properties, the probability can be

computed in a similar way.

Theorem 2. Let (C>?>, ?:C) be a topology BDD and packet BDD

tuple extracted from the property BDD of'402ℎ(B, 3, ∗). Then, we have

%A>1 ('402ℎ(B, 3, ?:C)) =
∑

G ∈Truth(C>?>) %A (G), where Truth(=) is

the set of all truth assignments, and %A (G) is the probability of the

truth assignment G .

Figure 4 shows that for 128/2 there are three truth assignments:

G1 = (;�� = 0, ;�� = 1), G2 = (;�� = 1, ;�� = 1), G3 = (;�� =

1, ;�� = 0, ;�� = 1). Then, %A>1 ('402ℎ(�,�, 128/2)) =
∑3
8=1 %A (G8).

In the following, we show how to compute %A (G8) for link failures

and node failures.

Link failures. Assume each link fails independently with proba-

bility of ?3>F= = 0.1 (correspondingly, ?D? = 0.9), then the reacha-

bility probability is %A>1 ('402ℎ(�,�, 128/2)) = 0.1∗0.9+0.9∗0.9+

0.9 ∗ 0.9 ∗ 0.1 = 0.981. Actually, for such a failure model, we can

assignweights ?3>F= and ?D? to dashed lines and solid lines, respec-

tively in the topology BDD, and efficiently compute the probabil-

ity with dynamic programming: %A>1 ('402ℎ(B, 3, ?:C)) = % (C>?>),

% (=) = ?3>F= ∗ % (=.3) + ?D? ∗ % (=.B), % (1) = 1, and % (0) = 0. Here,

=.3 and =.B are the two children of node = corresponding to the

dashed and solid line, respectively.

Node failures (dependent link failures). When a node fails, all

the links of this node will fail. This introduces dependency among

link failures, and the above dynamic programming method cannot

be used. Similar to [21], we use Bayesian Network (BN) to model

the dependency. For this example, suppose nodes � and � fail

with probability 0.01, BN will declare: % (#� = 0) = 0.01, % (#� =

0) = 0.01, % (;�� = 0|#� = 0 ∨ #� = 0) = 1, % (;�� = 0|#� ≠

0 ∧ #� ≠ 0) = 0.1, etc. Then, we can query the BN model for % (G8).

Similarly, nodes or links that share the same risk can be modeled

by introducing more dependency into BN, e.g., % (#� |#�) = 1.

6.5 Differential analysis

Operators are constantly changing configurations and need to know

how the changes affect properties: e.g., what properties become

satisfied or unsatisfied. DNA [27] can be used for such differential

analyses. However, without considering link or node failures, DNA

only returns “shallow differences”, which may overlook undesirable

differences. In the running example, suppose the operator deletes

the ACL which drops packets destined for 192/2 at � . Due to the

outbound route policy at� ,� still chooses to route packets for prefix

192/2 towards �, and no reachability or waypointing properties

are affected when all links are up. However, when links ;�� or ;��
fail, packets for prefix 192/2 will be dropped before the change but

will be forwarded to � after the change. The waypointing property

will be violated since packets for 192/2 will not traverse � under

some link failures. In addition, the link failure tolerance changes:

packets belonging to 192/2 sent by � will not reach � if ;�� or ;��
fails, before the change, while can reach� even these two links fail,

after the change.

Computing differences under failures. SRE can be used to iden-

tify the above failure-triggered differences in three steps: (1) for

each property, extract the topology BDD and packet BDD tuples

by running steps 1 and 2 for the changed configuration. (2) for

each tuple (?:C, C>?>), where C>?> changes from C>?> ′, compute

the differential BDD: (C>?> ∧ ¬C>?> ′) ∨ (¬C>?> ∧ C>?> ′). (3) com-

pute a truth assignment of the differential BDD. In addition, we can

also compute the difference of failure tolerance and probability by

computing the failure tolerance and probability for the changed

configuration, and comparing to those of the original configuration.

In the running example, consider the reachability from� to� , the

topology BDD of 192/2 changes, and the differential BDD encodes

;��¬(;��;��). One truth assignment to the differential BDD is

;�� = 0, ;�� = 1, and ;�� = 1, meaning that when link �� fails,

packets 192/2 is unreachable from � to � before the change, while

is reachable after the change. In addition, the tolerance increases

to one after the change.

7 Optimizations

The number of possible routes under all node/link failures can

explode for large networks (similar to path explosion for symbolic

execution of programs). Therefore, optimizations are necessary to

prune routes and make the symbolic execution tractable. Existing

verifiers use different optimizations targeted at different analyses.

In the following, we consider three of these optimizations, and

343

Symbolic Router Execution SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

show how SRE can leverage them to prune a significant number of

routes.

7.1 Route Pruning

Hoyan [26] observes that when considering a small number of

link failures, e.g., : ≤ 3, a lot of routes will become impossible

(the topology conditions contain >3 link failures) during route

computation and can be pruned. The tricky part here is that the

topology condition of a route can be partially impossible. Suppose

another router � is connected to � and � in Figure 1(a). � will

receive 4 routes for prefix 128/1:

�→�→� : ;��;�� �→�→�→� : ;��¬;��;��;��

�→�→� : ;��;�� �→�→�→� : ;��¬;��;��;��

Suppose� prefers routes received from�. Then, the route�→�→�

will have a topology condition:

¬(;��;��) ∧ ¬(;��¬;��;��;��) ∧ ;��;��

=(;��;��¬;��) ∨ (;��;��¬;��¬;��)

If we restrict to: ≤ 1 link failures, then only the second conjunction

should be pruned. To enable the above partial pruning with SAT

encoding (e.g., Hoyan), one has to represent the topology condition

as a disjunction of conjunctions of link variables, in order to prune

only those conjunctions with more than : negated link variables.

However, due to the negations and conjunctions, the topology

condition can grow very quickly, leading to what we call topology

condition explosion, which will make the simulation time out (§8.6).

SRE realizes route pruning without topology condition explosion:

since each topology condition is concisely encoded with a BDD, SRE

can filter partially impossible routes by conjuncting the topology

condition with a filtering BDD ; 5 : , which is a BDD representing

all possible ≤ : link failures. For the running example with 3 links,

; 5 1 is constructed as:

; 5 1 = (;��;��;��)∨ (¬;��;��;��)∨ (;��¬;��;��)∨ (;��;��¬;��)

Then, for each route with topology condition C2 , SRE updates it as

C2 ← C2 ∧ ; 5 : . The route will be pruned if C2 = �0;B4 .

Note that route pruning may under-estimate the probability that

a property holds, due to ignoring all the >: failure scenarios. How-

ever, when the probabilities of failures are quite small (e.g., 0.001),

which is often the case [21], the probability of >: failures decreases

quickly with : . Therefore, if allowing for some 8<?A428B8>= (e.g.,

10−4), it suffices to consider only a bounded number (:) of failures

and safely dropping routes with >: failures. Specifically, SRE pre-

computes the minimum : which guarantees that the probability of

> : link failures is smaller than the imprecision (e.g., 10−4) specified

by operators, that is:

:
∑

<=0

(

=

<

)

?<
3>F=

(1 − ?3>F=)
=−<

> 1 − 8<?A428B8>=,

where = is the number of links, and ?3>F= is the probability that a

link fails.

7.2 Prefix Pruning

Config2Spec [8] observes that some properties (e.g., reachability)

cannot hold under : failures due to the lack of topological con-

nectivity. Based on this observation, Config2Spec computes (k+1)-

edge-connected components (ECCs) on the topology: two nodes

are in the same (: + 1)-ECC if they remain connected when any :

edges are removed. Config2Spec prunes policies (e.g., reachability)

between nodes which are not in the same (: + 1)-ECC from the set

of candidate policies.

SRE leverages the observation to enable another optimization

termed prefix pruning. Unlike Config2Spec which prunes policies to

verify, SRE prunes prefixes to compute—i.e., SRE does not perform

symbolic route computation for the prefixes. Before enabling this

optimization, SRE first divides forwarding property analysis into

several strata: for the (: + 1)th stratum, SRE only considers those

properties whose failure tolerance is : , thereby pruning prefixes re-

lated to those properties whose failure tolerance is < : . By iterating

over all strata, SRE can compute failure tolerance for all properties.

For the (: + 1)th stratum, if a (: + 1)-ECC contains only one router

', then properties related to all prefixes originated by ' have failure

tolerance < : , and those prefixes can be pruned. Moreover, since

the (: + 1)th stratum does not need to consider > : link failures,

SRE can apply route pruning (§7.1) to reduce the number of routes

for unpruned prefixes.

Compared to route pruning which prunes routes during route

computation, prefix pruning prunes routes before route computa-

tion. The joint effect of prefix pruning and route pruning is remark-

able: for stratum with a smaller : , more routes will be pruned by

route pruning; for stratum with a larger : , more routes will be

pruned by prefix pruning. Therefore, the overall number of routes

will be relatively small with the above two optimizations. As we

show in our experiments, the stratified approach is faster than the

one-shot approach which considers all < : failures and hence does

not permit prefix pruning (§8.4).

Note that prefix pruning does not affect the accuracy of failure

tolerance analysis, but may under-estimate the probabilities of

properties. The reason is that even the property does not hold under

arbitrary : link failures, there may exist some : link failures under

which the property holds, whose probabilities are not counted when

prefix pruning is enabled.

7.3 Abstract Interpretation

ShapeShifter [6] applies abstract interpretation to reduce the num-

ber of routes during control plane simulation (under no failures).

ShapeShifter shows that for data center networks with many redun-

dant links and great symmetry, abstract interpretation significantly

speeds up the simulation process.

SRE can apply abstract interpretation to speed up the process of

SRC (§4). For example, if we only care whether there is a route to a

prefix at each router, we do not need to keep the AS path and can

abstract it using path length for best route selection. Then, many

routes with different AS paths, but the same path length can be

merged into a single route, whose topology condition is a disjunc-

tion of the topology conditions of those routes. For an 80-node fat

tree with three link failures, the speedup due to this optimization is

around 5× (§8.4). Unlike ShapeShifter, which concentrates on route

reachability and may lose precision when there are static routes

or ACLs, SRE considers packet reachability and therefore needs to

preserve the next hop of each route.

344

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Peng Zhang, Dan Wang, and Aaron Gember-Jacobson

10-1
100
101
102
103
104
105

k=0
k=1

k=2
k=3

k=0
k=1

k=2
k=3

k=0
k=1

k=2
k=3

k=0
k=1

k=2
k=3

k=0
k=1

k=2
k=3

Bics Columbus US Carrier Fattree
(20 nodes)

Fattree
(80 nodes)

T
im

e
 (

s
)

Bat�sh Minesweeper Tiramisu SRE

Figure 5: Time to check all-pair reachability under different

number of link failures.

10-3

10-1

101

103

105

k=0
k=1

k=2
k=3

k=0
k=1

k=2
k=3

k=0
k=1

k=2
k=3

k=0
k=1

k=2
k=3

k=0
k=1

k=2
k=3

Bics Columbus US Carrier Fattree
(20 nodes)

Fattree
(80 nodes)

T
im

e
 (

s
)

Bat�sh Minesweeper Tiramisu SRE

Figure 6: Time to check single-pair reachability under differ-

ent number of link failures.

8 Experiments

Implementation. We implemented SRE with Java. SRE uses the

JDD library [23] for BDD operations, and Batfish [1] to parse con-

figuration files into a vendor-neutral representation. Currently, SRE

supports OSPF, BGP, and static route.

Setup. All experiments run on a Linux server with two 12-core

Intel Xeon CPUs @ 2.3GHz and 256G memory.

Datasets. We use three synthetic datasets and one real dataset.

(1) WAN topologies running BGP or OSPF, from Config2Spec [8].

The dataset consists of three WAN topologies (small, median,

and large), consisting of 33 (48), 70 (85), and 158 (189) routers

(links), respectively.

(2) WAN topologies running BGP and OSPF, from NetDice [21].

The dataset consists of 90 WAN topologies, each of which has

>50 links.

(3) Fat trees running BGP or OSPF. The dataset consists of different

sizes of fat trees, from 20 nodes to 245 nodes.

(4) Campus network running OSPF. The dataset consists of 67 con-

figuration snapshots from the backbone network at a large

university [19]. The network has 28 routers, 50 links, ∼1K pre-

fixes, and an average of ∼75K total lines of configuration, which

generate ∼26K total forwarding rules. There are ∼1K ACL rules.

8.1 Failure tolerance analysis

Checking reachability under failures. Figure 5 shows the run-

ning time of SRE and three other configuration verifiers to check

all-pair reachability on the three WAN topologies and the fat tree

topologies (20 nodes and 80 nodes). For the WAN topologies, SRE

is generally >10× faster than the other verifiers. For the fat tree

topologies, SRE is >100× faster than Batfish and Minesweeper, and

faster than Tiramisu.We also include the results for checking single-

pair reachability, shown in Figure 6. We can see that SRE is faster

100

101

102

103

104

105

k=1
k=2

k=3
k=1

k=2
k=3

k=1
k=2

k=3
k=1

k=2
k=3

k=1
k=2

k=3
k=1

k=2
k=3

Bics
(BGP)

Bics
(OSPF)

Columbus
(BGP)

Columbus
(OSPF)

US Carrier
(BGP)

US Carrier
(OSPF)

T
im

e
 (

s
)

Con�g2Spec
SRE

Figure 7: Running time to mine specifications.

 0
 0.25

 0.5
 0.75

 1

100 101 102 103 104

C
D

F

Time (s)
Link Failures

NetDice (single) NetDice

100 101 102 103 104

Time (s)
Node Failures

SRE (single) SRE

Figure 8: Running time to compute probabilities for reacha-

bility under link failures and node failures.

than or comparable to Batfish and Minesweeper, but slower than

Tiramisu. This indicates that SRE is a better choice for reasoning

about a large header space and failure space, but not optimized for

reasoning about a specific prefix or failure.

Specification mining. We use SRE to mine policies from configu-

rations. To compare with Config2Spec [8], we use the three WAN

topologies, and consider four types of policies—reachability, way-

point, isolation, and load balancing. Figure 7 shows SRE mostly

takes <100 seconds to mine all the policies, 1-2 orders of magnitude

faster than Config2Spec.

8.2 Probabilistic analysis

We run SRE on the 90 WAN topologies [2] to compute probabilities

for reachability and waypointing properties with both link and

node failures. For each prefix, we consider the reachability from

each router to the prefix, and select a random waypoint. We set

the probabilities of node failure and link failure to 0.0001 and 0.001,

respectively (the same as NetDice). Both SRE and NetDice return

the same probabilities for reachability and waypointing properties,

within an imprecision of 10−4 on all topologies. As shown in Fig-

ure 8, for link failures, NetDice is faster than SRE when computing

the probability of a single reachability, but SRE is 1-2 orders of

magnitude faster than NetDice when computing the probabilities

of all reachabilities, except some large topologies (up to 2320 edges)

for which both SRE and NetDice time out after 1 hour. For node

failures, NetDice can compute probabilities of some reachabilities

that SRE cannot compute, while SRE is >2 orders of magnitude

faster than NetDice when computing probabilities of all reachabili-

ties, except the large topologies. This shows the advantage of SRE

in reasoning about the product space of packets and failures. The

results for waypointing probability (Appendix D) are similar.

8.3 Differential Analysis

We use SRE to compute the differences after a configuration change.

We consider the 10 atomic changes synthesized by DNA [27] and

345

Symbolic Router Execution SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

Dataset No. Routes
Reduction Ratio

RoutePrune +PrefixPrune +Abstract

Bics 3,819,240 98.32% 91.80% 61.42%
Columbus 25,382,778 98.81% 95.76% 59.09%
US Carrier 280,624,242 98.55% 99.20% 74.55%
Fattree(20) 146,040 97.55% 100.00% 0.00%
Fattree(80) BDD limit (379,552) 0.00% 93.82%
Fattree(125) BDD limit (2,389,050) 0.00% 96.97%

Table 2: The reduction in routes when applying different op-

timizations (: = 3, BGP). When the BDD node count limit is

reached, the corresponding number in the third column is

the number of routes.

10-1

100

101

102

103

104

k=0 k=1 k=2 k=3

T
im

e
 (

s
)

Bics

NoOptimization RoutePrune

100

101

102

103

104

105

k=0 k=1 k=2 k=3

Columbus

Pre�xPrune

100

101

102

103

104

k=0 k=1 k=2 k=3

US Carrier

RoutePrune+Pre�xPrune

Figure 9: Time to compute link failure tolerance of reacha-

bility, with and without route/prefix pruning.

apply these changes on the Bics WAN topology. For each change,

we run SRE with : = 0 to compute the differences DNA will find,

and we run SRE with : = 3 to get the differences under failures.

DNA can detect differences for 5/10 of the updates, while SRE can

detect differences in failure tolerance and probability for 7/10 and

10/10 of the updates, respectively. This means SRE can be used to

find differences that only manifest under specific failures.

8.4 The effectiveness of optimizations

We now quantify the effectiveness of the three optimizations (§7).

WAN topologies. Figure 9 shows the running time of SRE when

computing failure tolerance with and without route pruning and

prefix pruning (abstract interpretation is not quite effective, and is

not shown here). We can see that:

(1) optimizations are quite necessary for SRE to scale. For US Carrier,

without route pruning, the number of required BDD nodes exceeds

the limit supported by the JDD library [23] (see §8.5 for details),

while with route pruning and prefix pruning, the running time

is within 100 seconds. The scalability comes from the significant

reduction of routes (Table 2).

(2) different optimizations have different effectiveness for different

number of failures (:). Route pruning is more effective for smaller

: , when a lot of routes have > : failures, while prefix pruning is

more effective for larger : , when a lot of prefixes whose related

properties cannot tolerate ≥ : failures.

(3) stratification approach performs better than one-shot approach,

i.e., computing failure tolerance in a single round considering all

1, 2, . . . , : failures, and cannot enable prefix filtering. For example,

for US Carrier : = 3, the one-shot approach uses 5500 seconds

(the RoutePrune time for : = 3), while the stratification approach

uses 120 seconds (sum of the RoutePrune+PrefixPrune time for

: = 0, 1, 2, 3).

10-1

100

101

102

k=0 k=1 k=2 k=3

T
im

e
 (

s
)

Fattree
(20 nodes)

NoOptimization Abstract

100

101

102

103

k=0 k=1 k=2 k=3

Fattree
(80 nodes)

RoutePrune

100

101

102

103

k=0 k=1 k=2 k=3

Fattree
(125 nodes)

RoutePrune+Abstract

Figure 10: Time to compute link failure tolerance of reacha-

bility, with and without abstract interpretation.

10-1

100

101

102

103

104

 0 100 200 300 400 500

R
u
n
ti

m
e
 (

s
)

Fattree Size (Number of Nodes)

k=0 k=1 k=2 k=3

10-1

100

101

102

 0 100 200 300 400 500M
e
m

o
ry

 U
s
a
g
e
 (

G
B

)

Fattree Size (Number of Nodes)

Figure 11: Running time and memory usage when checking

all-pair reachability for different sizes of fat trees.

Fat trees. Figure 10 shows the running time of SRE when comput-

ing link failure tolerance with and without abstract interpretation

and route pruning (prefix pruning is not effective, except 20 nodes

and : = 3, and thus not shown here). As can be seen, abstract

interpretation becomes more effective for larger fat trees with more

redundant links, when more routes with equal path length can be

merged. Without abstract interpretation, the number of BDD nodes

required for the 125-node fat tree for : = 2, 3 exceeds JDD’s limit.

Similar to the WAN topologies, route pruning is quite effective.

8.5 Scalability

To evaluate whether SRE can scale to even larger networks with

>1000 links, we use SRE to analyze the failure tolerance of all-pair

reachability on different sizes of fat trees. Figure 11 shows the

running time and peak memory usage of SRE for different number

of link failures. As shown in Figure 11(a), for fat tree with 320 nodes

(2048 links), SRE finishes when there are at most one link failure,

while for fat trees with 500 nodes and 4000 links, SRE finishes only

when there are no failures.

This is due to the limitation of node table size in JDD, which uses

an array of integers to store all BDD nodes. Since each BDD node

uses three integers, the maximum (theoretical) number of nodes is

(231−1)/3, which is roughly 7.16×108. Since JDD uses 22 Bytes for

each node, it consumes approximately 16GB for maintaining BDD

nodes. To confirm this, we allocate 100GB to Java Virtual Machine,

and observe that the peak memory usage is bounded by around

20GB, which is comparable to 16GB. Therefore, we expect SRE can

scale to larger fat trees with another BDD library that can hold

more nodes.

8.6 SAT or BDD?

In this experiment, we replace the encoding of topology condition

with SAT formula, similar to Hoyan [26], and show how it compares

to SRE which uses BDDs. We randomly select 10 prefixes from

346

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Peng Zhang, Dan Wang, and Aaron Gember-Jacobson

Dataset k=0 k=1 k=2 k=3

Bics
TC Length 480 2,116 8,195 28,651
Time (s) 0.96 1.23 2.48 13.13
Timeout 0/10 0/10 0/10 0/10

Columbus
TC Length 1470 16,726 147,009 813,122
Time (s) 1.37 3.25 91.27 1435.49
Timeout 0/10 0/10 0/10 3/10

US Carrier
TC Length 4,930 79,030 809,318 -
Time (s) 2.80 15.96 712.38 -
Timeout 0/10 0/10 1/10 10/10

Table 3: Length of topology condition and running timewith

SAT encoding.

C2 C1

A2 A1

D1D2

10.0.7.0/2410.0.8.0/24

1

500

250 10

1

1

1

To A3 � A8

VLAN 7VLAN 8

Figure 12: The topology of the campus network and the

three packet forwarding paths (in different colors) from a

core router�1 to 10.0.7.0/24. The number along each link de-

notes the OSPF cost of that link.

 0
 0.25

 0.5
 0.75

 1

10-1 100 101

C
D

F

(1) SRC

k=0 k=1 k=2 k=3

100 101 102

Time (s)
(2) SPF

100 101 102 103

(3) FPA

Figure 13: Running time of SRE on campus network.

the three WAN topologies, and run symbolic route computation.

Table 3 shows that with increasing network size and value of : ,

more prefixes will time out, e.g., for US Carrier : = 3, all the 10

prefixes time out. The reason is topology condition explosion: the

formula length encodedwith SAT grows quite fast when: increases,

making the updating of the topology condition extremely slow.

8.7 Real Network

We use SRE to check reachability in the campus backbone network.

As shown in Figure 12, the campus backbone network has a hier-

archical structure, with 2 core routers (�1 and �2), 8 aggregation

routers (�1–�8), and 18 distribution routers (�1–�18). The aggrega-

tion and distribution routers are deployed in primary-backup pairs

(e.g., �1 and �2). Each access VLAN (e.g., VLAN 7 associated with

subnet 10.0.7.0/24) is connected to a pair of distribution routers.

First, we check all-pair reachability between all access VLANs.

Figure 13 shows the running time for the two stages of SRE (SRC

and SPF) and property analysis (FPA). The distribution is over the

67 configuration snapshots. SRE generates the same FIBs as Batfish

when there are no failures (: = 0). We can see that for this campus

network, SRE takes around 1000 seconds. We also run Minesweeper

and Tiramisu, both of which cannot run to completion. This is due

to the existence of ∼1K ACL rules, ∼1K prefixes, >1K VLANs, and

multiple VRFs.

Second, we compute the failure tolerance for reachability from

each core router to each access VLAN: e.g., Reach(�1, 10.0.7.0/24),

Reach(�2, 10.0.7.0/24), etc. The failure tolerance computed by SRE

and Minesweeper are both 1—i.e., an access VLAN is always reach-

able from �1 or �2 if there are ≤ 1 link failures, but unreachable

if there are ≥ 2 link failures such as when ;�1�1
and ;�2�2

fail

simultaneously.

9 Limitations

No performance gains when analyzing a single point in the

header or failures space. SRE is aimed at scaling to the product

space of packets and failures, and therefore not optimized for check-

ing a single prefix under failures. As shown in §8, SRE is slower

than Tiramisu for checking single-pair reachability, and comparable

with Batfish and Minesweeper when there are no failures (Figure 6).

No support for cross-path/cross-flowproperties. SRE currently

does not support properties that require reasoning about multiple

forwarding paths of the same flow [11] or the forwarding behaviors

of multiple flows [21].

No incremental computation. SRE currently does not support

incremental computation [27]. When configurations change, SRE

needs to re-run symbolic route computation and symbolic packet

forwarding, and re-check the properties.

10 Conclusion

Symbolic Router Execution (SRE) is a general and scalable network

verification engine that supports various types of analyses. SRE

symbolically executes the network model to discover packet failure

equivalence classes (PFECs) to scale to the product space of head-

ers and failures. By encoding symbolic headers and failures with

BDDs, SRE enables operators to analyze properties with graph algo-

rithms on BDDs, agnostic of failure models or network semantics.

Our future work includes overcoming the limitations of SRE, and

experimenting with other BDD libraries.

Acknowledgement. We thank our Shepherd Ennan Zhai, and all

the anonymous SIGCOMM reviewers for their valuable comments

and suggestions. This work is partially supported by the United

States National Science Foundation (No. 1763512).

Ethical issues. This work does not raise any ethical issues.

References

[1] [n. d.]. Batfish. https://github.com/batfish/batfish.
[2] [n. d.]. NetDice. https://github.com/nsg-ethz/netdice.
[3] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya Akella. 2020.

Tiramisu: Fast and General Network Verification. In USENIX NSDI.
[4] Henrik Reif Andersen. 1997. An introduction to binary decision diagrams. Lecture

notes, available online, IT University of Copenhagen (1997).
[5] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A general

approach to network configuration verification. In ACM SIGCOMM.

347

Symbolic Router Execution SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

[6] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2020. Abstract
interpretation of distributed network control planes. In ACM POPL.

[7] Theophilus Benson, Aditya Akella, and David A. Maltz. 2009. Mining policies
from enterprise network configuration. In ACM IMC.

[8] Rüdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, and Martin Vechev.
2020. Config2Spec: Mining Network Specifications from Network Configurations.
In USENIX NSDI.

[9] Randal E Bryant. 1986. Graph-based algorithms for boolean function manipula-
tion. IEEE Trans. Comput. 100, 8 (1986), 677–691.

[10] Seyed K Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd Millstein, Vyas
Sekar, and George Varghese. 2016. Efficient network reachability analysis using
a succinct control plane representation. In USENIX OSDI.

[11] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govin-
dan, Ratul Mahajan, and Todd Millstein. 2015. A general approach to network
configuration analysis. In USENIX NSDI.

[12] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and Ratul Mahajan.
2016. Fast control plane analysis using an abstract representation. In ACM
SIGCOMM.

[13] Nick Giannarakis, Ryan Beckett, Ratul Mahajan, and DavidWalker. 2019. Efficient
verification of network fault tolerance via counterexample-guided refinement. In
International Conference on Computer Aided Verification.

[14] Nick Giannarakis, Devon Loehr, Ryan Beckett, and David Walker. 2020. NV: an
intermediate language for verification of network control planes. In Proceedings
of the 41st ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI).

[15] Nick Giannarakis, Alexandra Silva, and DavidWalker. 2021. ProbNV: probabilistic
verification of network control planes. Proc. ACM Program. Lang. 5, ICFP (2021).

[16] Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header space
analysis: Static checking for networks. In USENIX NSDI.

[17] Ali Kheradmand. 2020. Automatic Inference of High-Level Network Intents by
Mining Forwarding Patterns. In ACM Symposium on SDN Research.

[18] James C King. 1976. Symbolic execution and program testing. Commun. ACM
19, 7 (1976), 385–394.

[19] David Plonka and Andres Jaan Tack. 2009. An Analysis of Network Configuration
Artifacts. In Proceedings of the 23rd Large Installation System Administration
Conference.

[20] Santhosh Prabhu, Kuan-Yen Chou, Ali Kheradmand, P Godfrey, and Matthew
Caesar. 2020. Plankton: Scalable network configuration verification through
model checking. In USENIX NSDI.

[21] Samuel Steffen, TimonGehr, Petar Tsankov, Laurent Vanbever, andMartin Vechev.
2020. Probabilistic Verification of Network Configurations. In ACM SIGCOMM.

[22] Bingchuan Tian, Xinyi Zhang, Ennan Zhai, Hongqiang Harry Liu, Qiaobo Ye,
Chunsheng Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming Zhang, et al. 2019.
Safely and automatically updating in-network ACL configurations with intent
language. In ACM SIGCOMM.

[23] Arash Vahidi. [n. d.]. JDD, a pure Java BDD and Z-BDD library. https://bitbucket.
org/vahidi/jdd/.

[24] Konstantin Weitz, Doug Woos, Emina Torlak, Michael D Ernst, Arvind Krish-
namurthy, and Zachary Tatlock. 2016. Scalable verification of border gateway
protocol configurations with an SMT solver. In ACM OOPSLA.

[25] Hongkun Yang and Simon S Lam. 2013. Real-time verification of network prop-
erties using Atomic Predicates. In IEEE ICNP.

[26] Fangdan Ye, Da Yu, Ennan Zhai, Hongqiang Harry Liu, Bingchuan Tian, Qiaobo
Ye, Chunsheng Wang, Xin Wu, Tianchen Guo, Cheng Jin, et al. 2020. Accuracy,
Scalability, Coverage: A Practical Configuration Verifier on a Global WAN. In
ACM SIGCOMM.

[27] Peng Zhang, Aaron Gember-Jacobson, Yueshang Zuo, Yuhao Huang, Xu Liu, and
Hao Li. 2022. Differential Network Analysis. In USENIX NSDI.

A Algorithms for Symbolic Route

Computation

Algorithm 1: UpdateRIB(')

Input: ': the router whose RIB is to be updated.

1 ;8BCB ← {};

2 A>DC4B$DC ← {};

3 Sort(A>DC4B�=);

4 foreach A>DC4 ∈ A>DC4B�= do

5 ;8BC ← A81.Get(A>DC4.?A4 5 8G);

6 if ;8BC .2>=C08=B (A>DC4) then

7 A ← ;8BC .64C'>DC4 (A>DC4) ;

8 A .C28= ← A>DC4.C28= ;

9 else

10 ;8BC .InsertRoute(A>DC4);

11 8=34G ← ;8BC .64C�=34G (A>DC4) ;

12 if 8=34G < ;8BC .2ℎ0=64%>B then

13 ;8BC .2ℎ0=64%>B ← 8=34G ;

14 ;8BCB ← ;8BCB ∪ {;8BC };

15 foreach ;8BC ∈ ;8BCB do

16 <0C2ℎ43 ← False;

17 foreach A>DC4 ∈ ;8BC [0 : ;8BC .2ℎ0=64%>B] do

18 <0C2ℎ43 ←<0C2ℎ43 ∨ A>DC4.C28= ;

19 foreach A>DC4 ∈ ;8BC [;8BC .2ℎ0=64%>B : ;8BC .;4=] do

20 C2 ← ¬<0C2ℎ43 ∧ A>DC4.C28= ;

21 if C2 ≠ A>DC4.C2A81 then

22 A>DC4.C2A81 ← C2 ;

23 A>DC4B$DC ← A>DC4B$DC ∪ {A>DC4 }

24 <0C2ℎ43 ←<0C2ℎ43 ∨ A>DC4.C28= ;

25 foreach A>DC4 ∈ A>DC4B$DC do

26 foreach # ∈ #486ℎ1>AB do

27 if %>;82~�;;>F (', #, A>DC4) then

28 A ← A>DC4 ;

29 A .C28= ← A>DC4.C2A81 ∧ !8=: (', #) ;

30 A .C2A81 ← False;

31 �3E4AC8B4 (#, A) ;

B Proof of Theorem 1

Proof. Let) be the link failure tolerance, and ! be the length

of shortest path. We will prove) = ! − 1 by showing (1)) < !, and

(2)) ≥ ! − 1. First, since there is a path from root to False whose

length is !, then there exists a topology condition where ! links are

down, such that the reachability does not hold. That is, we have the

failure tolerance) < !. Second, suppose) < ! − 1, then we have

a topology condition where (! − 1) links are down and all other

(# − ! + 1) links are up, such that the reachability does not hold.

The condition corresponds to a path to False which has at most

(! − 1) dashed edges, since the (# − ! + 1) links either correspond

to solid edges, or do not appear on the path. This contradicts the

fact that the shortest path to False is !. �

348

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Peng Zhang, Dan Wang, and Aaron Gember-Jacobson

C Algorithms for Failure Tolerance

Computation

Algorithm 2: LFTReach(BA2 , 3BC , ℎ3A , P)

Input: BA2 : the source; 3BC : the destination; ℎ3A : the header specification; P:
the set of all PFECs.

Output: !�) : a set of tuples (BA2,3BC, ?:C, :) , meaning the link failure
tolerance for '402ℎ (BA2,3BC, ?:C) is : .

1 !�) ← {};

2 A402ℎ ← GetPropertyBDDReach(src, dst, hdr);

3 4GCA02C43 ← Extract(reach, wildcards);

4 foreach (C>?>, ?:C) ∈ 4GCA02C43 do
5 : ← ShortestPath(C>?>, 0) − 1;

6 !�) ← !�) ∪ {(BA2,3BC, ?:C, :) };

7 Function GetPropertyBDDReach(BA2,3BC, ℎ3A):
8 A402ℎ ← False;

9 foreach ? ∈ P do
10 if ?.BA2 = BA2 and ?.3BC = 3BC then
11 A402ℎ ← A402ℎ ∨ ? ;

12 return A402ℎ ∧ ℎ3A ;

13 Function Extract(=>34, ?:C):
14 if =>34 ∈ {True, False} or E0A (=>34) ∈ !8=:B then
15 return {=>34, ?:C };

16 ?; ← ?:C , ?; [E0A (=>34)] ← 0;

17 ?A ← ?:C , ?A [E0A (=>34)] ← 1;

18 return Extract(=>34.;, ?;) ∪ Extract(=>34.A, ?A);

D Extra Experiment Results

Figure 14 shows running time to compute probabilities for way-

pointing property under link failures and node failures.

 0
 0.25

 0.5
 0.75

 1

100 101 102 103 104

C
D

F

Time (s)
Link Failures

NetDice (single) NetDice

100 101 102 103 104

Time (s)
Node Failures

SRE (single) SRE

Figure 14: Running time to compute probabilities for way-

pointing property under link failures and node failures.

349

