
Expresso: Comprehensively Reasoning About External Routes
Using Symbolic Simulation

Dan Wang
Xi’an Jiaotong University

Peng Zhang
Xi’an Jiaotong University

Aaron Gember-Jacobson
Colgate University

Abstract

Existing network veri�ers can e�ciently identify failure-induced

bugs. However, an equally-important concern is identi�cation of

external-routes-induced bugs, which has not been well addressed.

Comprehensively reasoning about external routes is challenging,

since each external neighbor can advertise an arbitrary set of routes,

which is quite a huge space. This paper introduces a new network

veri�er, Expresso, which uses symbolic simulation to explore the

equivalences in the space of external routes. We evaluate the e�ec-

tiveness and scalability of Expresso on the WAN of a large cloud

service provider and Internet2. Expresso found various property

violations, some of which have already been con�rmed by the op-

erators. To the best of our knowledge, Expresso is the only veri�er

that can check the correctness of WANs amidst arbitrary external

routes in a tractable amount of time, while other veri�ers time-out

after 1 day.

CCS Concepts

• Computer systems organization→ Reliability.

Keywords

network veri�cation, external route, equivalence classes, symbolic

simulation

ACM Reference Format:

DanWang, Peng Zhang, and Aaron Gember-Jacobson. 2024. Expresso: Com-

prehensively Reasoning About External Routes Using Symbolic Simula-

tion. In ACM SIGCOMM 2024 Conference (ACM SIGCOMM ’24), August

4–8, 2024, Sydney, NSW, Australia. ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3651890.3672220

1 Introduction

Network veri�cation has the power to detect latent failure-induced

bugs in con�gurations, by analyzing the forwarding behaviors un-

der all potential environments or scenarios of failures. For example,

network veri�ers can check whether a routing/forwarding prop-

erty holds under ≤ : arbitrary node/link failures [12, 25, 29, 30].

However, an equally important but less explored dimension of en-

vironment is external routes: i.e., whether a routing/forwarding

property holds assuming any neighbor can advertise an arbitrary

set of routes.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0614-1/24/08
https://doi.org/10.1145/3651890.3672220

Many network outages are triggered when routes for certain pre-

�xes are advertised in an unexpected way. For example, operators

of a WAN informed of us a blackhole that occurred inside the WAN

when one ISP accidentally advertised an internal pre�x owned by

theWAN—a scenario which theWAN operators had not anticipated.

Similarly, when a large CDN mistakenly advertised more speci�c

routes received from its peer, a peering link was overwhelmed

and massive packet drops caused the peer to be inaccessible from

external networks [6]. (See §2.1 for details.)

Since neighbors can theoretically advertise an arbitrary set of

routes, reasoning about the external route environment requires ex-

ploring a colossal space. Firstly, the number of possible pre�xes a

neighbor may advertise is quite large: 233 − 1 for IPv4 pre�xes1.

Secondly, a neighbor typically advertises multiple pre�xes simulta-

neously: e.g., a neighbor may advertise distinct pre�xes for each of

its customers, or a neighbor may advertise a pre�x (e.g., /16) and

several sub-pre�xes (e.g., /24) for tra�c engineering purposes. Dif-

ferent combinations of pre�xes can result in di�erent forwarding

behaviors due to the longest pre�x match semantics of the data

plane and, if con�gured, route aggregation in the control plane.

Thus, the space of combinations to explore for a single neighbor

can be as large as 2(2
33−1) . Thirdly, many networks have tens or

hundreds of neighbors that each advertises di�erent combinations

of pre�xes: e.g., one neighbor may advertise a less-speci�c (e.g., /16)

pre�x and another neighbor may advertise more-speci�c (e.g., /24)

sub-pre�xes. Checking policies such as egress preferences requires

considering di�erent combinations of route advertisements from

di�erent combinations of neighbors. This space can be as large as

(2(2
33−1))= for a network with = neighbors. Finally, route advertise-

mentsmay contain di�erent attributes—e.g., AS path, communities—

that can in�uence how a route advertisement is treated, which

further grows the space to consider.

Many existing veri�ers are ill-suited for reasoning about arbi-

trary external route environments, because the veri�er requires a

concrete set of route advertisements [10, 13, 15, 17, 22, 29, 30], and

enumerating the aforementioned space is intractable. Some veri-

�ers allow external neighbors to advertise an arbitrary set of routes

by making routing advertisements symbolic [2, 12, 19, 27], but the

underlying solvers cannot e�ciently accommodate the large space

of variables this requires. (See §2.3 for details.)

Fortunately, there exist equivalencies in the space of external

routes. (1) Pre�x equivalence: pre�xes that match the same (or equiv-

alent) route policies throughout the network will be treated the

same during route computation. For example, if a route policy is

de�ned for 10.0.0.0/16 ≥24, which encompasses all advertisements

for sub-pre�xes of 10.0.0.0/16 with a pre�x length ≥ 24, then adver-

tisements for 10.0.1.0/24 and 10.0.2.0/24 will be treated the same.

1For each pre�x length 8 , there are 28 pre�xes. therefore, the total number of IPv4

pre�xes is Σ32
8=02

8
= 233 − 1.

https://doi.org/10.1145/3651890.3672220
https://doi.org/10.1145/3651890.3672220

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Dan Wang, Peng Zhang, and Aaron Gember-Jacobson

(2) Advertiser equivalence: for a speci�c pre�x, whether or not a

neighbor advertises the pre�x does not impact the best routes. For

example, if the network sets a high local preference for advertise-

ments for 10.0.0.0/8 received from one neighbor, then this route

will always be the best route, regardless of whether or not other

neighbors advertise the pre�x.

This paper introduces a new network veri�er, called Expresso,

which exploits these equivalences to scale the analysis of rout-

ing/forwarding properties to all external route environments. Ex-

presso uses a symbolic simulation approach inspired by SRE [30].

SRE makes link up/down state symbolic using boolean variables

(one per link), and simulates the control and data plane to discover

failure scenarios that result in the same best routes and/or for-

warding paths. However, instead of introducing “dummy” nodes

representing pre�xes advertised by external neighbors and using

(233−1)×= “link” variables (details in §3.1), Expresso makes pre�xes

and external neighbors’ advertising of those pre�xes symbolic.

In the control plane, the computation for di�erent pre�xes is

(mostly) independent,2 so 38+= boolean variables is su�cient: 32 for

the (IPv4) address, 6 for the (IPv4) pre�x length, and a single variable

for each neighbor indicating whether or not the neighbor adver-

tises the implied pre�x. The Expresso Path Vector Protocol (EPVP)

operates on route advertisements with symbolic pre�x and adver-

tiser variables—as well as symbolic AS paths and communities—to

simulate route computation, and solve the canonical stable paths

problem [20], for arbitrary external route advertisements.

In the data plane, longest pre�x match semantics create depen-

dencies between related pre�xes—e.g., a packet will match a for-

warding rule with a /24 pre�x if a forwarding rule with a more

speci�c /26 pre�x does not exist—so using a single boolean variable

for each external neighbor is insu�cient. Thus, Expresso introduces

a boolean variable for each pre�x length for each neighbor—a total

of 38 + 32= variables—and converts symbolic routes into symbolic

forwarding rules that account for longest pre�x match semantics.

We implement Expresso and use it to check the con�gurations

from a large cloud provider’s WAN and Internet2. Expresso �nds

187 miscon�gurations that may cause route leaks, route hijacks,

and tra�c hijacks when speci�c neighbors advertise certain routes;

42 of the miscon�gurations have already been con�rmed and �xed

by the operators.

Contributions. In sum, our contributions are:

• We show the necessity of reasoning about arbitrary external

routes, when checking network con�gurations.

• We design and implement Expresso, a veri�er that can com-

prehensively reason about external routes in a scalable way,

with symbolic simulation.

• We use Expresso to check the WAN of a large cloud service

provider (CSP), and �nd miscon�gurations that may cause

route leaks, route/tra�c hijacks.

• We evaluate the performance of Expresso on theWAN of CSP

and Internet2, and show that Expresso is the only veri�er

that can �nish (within a hour), while others time-out after

one day.

2Route aggregation introduces limited dependencies (details in §3.1).

(a) Before config update

Bgp{10.1.0.0/16} Packets

DC

AS100

AS200

AS65500

(b) After config update

DC

AS100

AS200

AS65500

A B

C

D
A B

C

D

Static{10.1.0.0/16}→B Static{10.1.0.0/16}→B

Packet
drop

CSP CSP

Figure 1: A blackhole in a large cloud service provider.

2 Motivation

In this section, we motivate the need to check the correctness of

con�gurations against arbitrary external routes, using two real

outages caused by unexpected external routes. Then, we de�ne

veri�cation tasks that can detect those outages, and discuss the

limitations of existing veri�ers for those tasks.

2.1 Why Arbitrary External Routes?

Many issues like route leaks only manifest upon receipt of some

unexpected route advertisements from neighbors. To show this, we

use two real incidents, one from a cloud service provider, and the

other from a content deliver network.

Case 1: An internal blackhole due to unexpected external

route advertisements. Figure 1 shows a real incident of a large

cloud service provider (CSP). The CSP has tens of datacenters across

the world, which are connected by its own wide area network

(WAN) with AS number 100. The WAN peers with hundreds of ISPs

at di�erent Points of Presence (PoPs). At one PoP, there are two

routers � and � connecting to ISPs, and a router � connecting to

the datacenter (�� , with private AS number 65500). � advertises a

pre�x 10.1.0.0/16 received from the datacenter to � and �. � peers

with a router of ISP � using BGP; for �, however, � con�gures

a static route for the pre�x 10.1.0.0/16 with � as the next hop.

Initially, router � is con�gured to only advertise the default route

to router� , with a con�guration command “advertise-default”. One

day, the operators remove this command to let� advertise all routes

received from the Internet to datacenters (� in this example), so

that datacenters can �exibly choose their respective best PoP to

reach the Internet. However, after the change, the pre�x 10.1.0.0/16

becomes unreachable from the Internet.

After checking the routing tables, the operator found that router

� receives a route for 10.1.0.0/16 from router� , who isn’t supposed

to advertise this route. This route propagates to router � through

BGP. Since this BGP route has a higher priority than the route

received from the datacenter, it becomes the best route at � . Then,

� stopped advertising the route for 10.1.0.0/16 to �, since �, �

and � are iBGP neighbors and BGP prevents an iBGP peer from

re-advertising that route [18]. This leads to a blackhole at router

�: all tra�c from the Internet to the internal pre�x 10.1.0.0/16 are

dropped at �.

Expresso: Comprehensively Reasoning About External Routes Using Symbolic Simulation ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

1
0

.1
.0

.0
/1

6

Routes Packets

(a) Before route leak

ISP1

ISP2

CDN

1
0

.1
.0

.0
/1

6
(b) After route leak

ISP1

ISP2

CDN

A

B

A

B

Packet drop

Figure 2: A real route leak on the Internet.

Case 2: A route leak on the Internet. Figure 2 shows a typical

route leak on the Internet [6], simpli�ed for illustrative purposes.

A national ISP2 hosts millions of customers with a block of IP

addresses 10.1.0.0/16. and advertises this /16 pre�x to another ISP1.

Since ISP2 exchanges a massive volume of tra�c with a content

delivery network (CDN), the operator de-aggregates the /16 pre�x

into multiple more speci�c /24 pre�xes, and advertises di�erent /24

routes to the CDN at di�erent PoPs (router � and �). Normally, the

CDN should not export those speci�c routes to its peers. However,

one day operators of the CDNmade a miscon�guration, advertising

the /24 pre�xes to its neighbors, including ISP1. As a result, ISP1

began to choose the CDN instead of ISP2 as the next hop, and a

large volume of tra�c from ISP1 to ISP2 congested at the CDN,

disconnecting millions of customers of ISP2 from the Internet.

Lessons learnt. (1) External route advertisements can impact the

reachability of internal networks, andmay cause violations of reach-

ability properties inside the network. Veri�ers that focus on check-

ing reachability inside a closed environment may miss those vi-

olations. (2) It is insu�cient to assume that neighbors advertise

a speci�c set of routes, since some violations only manifest upon

receiving some unexpected routes. Therefore, operators from one

network need to consider arbitrary external routes, so that they do

not pay for the mistakes made by operators of other networks.

2.2 Veri�cation Tasks

Detecting outages caused by external routes requires checking two

categories of end-to-end network behaviors:

• Routing properties specify how routes satisfying certain con-

straints should propagate inside the network, e.g., routes

advertised by a neighbor of router A should never be ex-

ported by another router B to any of its neighbors. Checking

routing properties requires modeling the route computation

behaviors (control plane).

• Forwarding properties specify how packets satisfying certain

constraints are forwarded inside the network, e.g., all inter-

nal pre�xes should be reachable from the internal network

and the Internet. Checking forwarding properties requires

modeling the packet forwarding behaviors (data plane).

It is essential to model the routing and forwarding behaviors in

an end-to-end manner, because routes and packets may traverse

multiple hops inside a network, where each hop performs a subset

of operations.

2.3 Related Work

Control plane veri�cation (CPV) reasons about the correctness of

router con�gurations against speci�c routing or forwarding prop-

erties, under some potential environment states. Considering envi-

ronment state enables CPV to detect latent bugs that only manifest

under speci�c environments, e.g., two links fail simultaneously, a

neighbor advertises a speci�c set of routes. Modeling link failures

has been extensively studied [12, 19, 23, 25, 29, 30]. Here, we discuss

how existing veri�ers handle the impact of external routes.

No external routes. Some veri�ers [10, 22, 29, 30] have not explic-

itly discussed how to handle the impact of external routes. While

these veri�ers can add “dummy” nodes that advertise speci�c sets

of pre�xes, this simple workaround does not allow those veri�ers

to detect latent bugs due to arbitrary, unexpected external routes.

Concrete external routes. A few veri�ers consider concrete sets

of external routes. Bat�sh [17] lets users specify a list of route ad-

vertisements received from each neighbor. ERA [15] uses a BDD

to represent route advertisements received from each neighbor, so

as to model a �exible set of advertisements—e.g., users can let a

neighbor simultaneously advertise all pre�xes using the BDD True,

instead of providing a concrete list of all IPv4 pre�xes. However,

ERA still considers one concrete environment (each neighbor ad-

vertises a speci�c set of routes) at a time, and needs to enumerate

environments to cover all cases where each neighbor advertises

an arbitrary set of routes. Similarly, ShapeShifter [13] can con-

sider a batch of external routes by abstracting away some route

attributes (e.g., AS Path). However, this abstraction incurs some

loss of precision, and, like ERA, still entails a concrete assumption

about external routes.

Symbolic external routes. Some veri�ers [2, 12, 19, 27] allow each

neighbor to advertise an arbitrary set of external routes by making

the route advertisement of the neighbor symbolic. Bagpipe [27]

models the BGP route computation and the properties to check with

SMT constraints, and uses o�-the-shelf solvers (e.g., Z3) to prove

whether the properties hold. Minesweeper [12] and NV [19] also use

SMT, but their models are more general, including interior gateway

protocols like OSPF. Even thought these SMT-based veri�ers avoid

enumerating all possible external routes, their scalability is still

limited due to the large number of SMT constraints. For example,

Minesweeper generates over 1.6 million SMT constraints—which

takes hundreds of seconds to solve—for a single region of a cloud

service provider’s WAN (10 nodes, 40 neighbors), and Minesweeper

times out after a day when applied to the full WAN (30 nodes,

100 neighbors). The latest version of Bat�sh [2] provides a ques-

tion named SearchRoutePolicies, which uses BDDs to search

for routes that exhibit a particular behavior (permit or deny) for a

speci�c route policy. However, such a unit test on route policies

can miss bugs caused by mistakes in con�gurations beyond route

policies (e.g., iBGP sessions [16]). For example, a missing command

in BGP peer con�guration can also lead to a route leak, even though

the routing policies are correct (§3.2).

Monitoring and auditing systems. Authoritative organizations

(e.g., RIPE NCC [9]) have been encouraging ASes to register their

BGP information (e.g., pre�xes and routing policies) for years. Given

that information, ASes can use monitoring or auditing systems (e.g.,

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Dan Wang, Peng Zhang, and Aaron Gember-Jacobson

Internal

Network

000/0 100/1 110/2 110/3 111/3

n1 n2

p1=0,p2=0,p3=0

l1=0,l2=0

p1=1,p2=0,p3=0

l1=0,l2=1

p1=1,p2=1,p3=0

l1=1,l2=0

p1=1,p2=1,p3=0

l1=1,l2=1

p1=1,p2=1,p3=1

l1=1,l2=1

...

p1,p2,p3: IP address bits

l1,l2: Prefix length bits

n1,n2: External neighbors

Figure 3: Illustration of the key insights.

[1, 3, 4]) to detect route leaks and/or hijacks. However, this approach

is hard to promote as ASes are reluctant to register their information

since it is usually private, and it can only detect routing anomalies

passively instead of preventing them proactively. We believe that

enabling a single AS to proactively reason about external routes

without global coordination is more promising.

3 Overview

We now discuss the key insights of Expresso and show the work�ow

of Expresso with an example network. For simplicity of illustration

in this section, we assume an IP address has only three bits, denoted

by ?1, ?2, ?3. Then, the pre�x length can be represented with two

bits ;1, ;2 (e.g., “11” means a pre�x length of 3).

3.1 Key Insights

Expresso is inspired by SRE [30], a network veri�er which can

reason about a large space of failure scenarios in a scalable way. SRE

achieves the scalability by using symbolic simulation (execution),

where equivalent failure scenarios are compressed by making link

state (up or down) symbolic.

An intuitive approach for reasoning about arbitrary external

routes is to make the external route environment symbolic. Speci�-

cally, suppose a network has = external neighbors, each represented

by a node, as shown in Figure 3. For each of the 24 − 1 pre�xes

possible with 3-bit IP addresses, we include a virtual node and

link it to each neighbor node. The link between a neighbor and a

pre�x node is said to be up/down, if and only if the neighbor adver-

tises/does not advertise that pre�x. In this way, the up/down state

of all (24 − 1) × = links represents an external route environment.

Using SRE in this manner with IPv4 addresses requires (233 − 1) ×=

links and corresponding boolean variables. Such a large number of

variables is infeasible for any known BDD library or SMT solver.

Expresso is based on the key observation that pre�xes aremostly

independent of each other in the control plane, and have limited

dependency in the data plane, so we can use far fewer boolean

variables for the symbolic route environment.

Independency in the control plane. In the control plane, the

computations of routes for di�erent pre�xes do not interfere with

each other—except in the case of route aggregation, which we dis-

cuss later3. Due to such independency, we only need to reason about

the advertisement of one pre�x (i.e., one pre�x node’s “links”) at a

time, so a single variable is enough for each neighbor. Speci�cally,

we can use 5 variables to identify the pre�x (3 for the address, 2

for the length) we are reasoning about, plus another = variables to

3Other dependencies such as BGP conditional route advertisement are discussed in §8.

control whether or not each neighbor announces this pre�x. (For

IPv4, 38+= variables is enough!) For example, as shown in Figure 3,

we can �rst “select” the pre�x 110/2 (the red node) by constraining

the boolean variables ?1 = 1, ?2 = 1, ?3 = 0, ;1 = 1, and ;2 = 0. Then,

only two links (red) remain, and we can use another two variables

=1 and =2 to specify whether or not each of the two neighbors

advertises the pre�x 110/2.

Route aggregation may introduce dependency among some pre-

�xes with common �rst bits, but it can be supported with a few

more variables. The upper bound of needed additional variables is

determined by the shortest pre�x length of all aggregated pre�xes,

since each aggregated pre�x depends on all longer pre�xes having

common �rst bits with it. For example, if there’s two aggregation

rules for IPv4 pre�xes, one generates a /20 pre�x and the other

generates a /24 pre�x, then we need 12 × = more variables (in the

worst case).

Limited dependency in the data plane. In the data plane, pre-

�xes become dependent due to the longest pre�x matching (LPM)

principle: a route matched by a packet is used for forwarding only

if there are no other routes that are also matched and have longer

pre�x lengths. For example, in Figure 3, whether routes to pre-

�x 110/2 (red node) are used for packet forwarding depends on

whether routes to pre�x 110/3 and 111/3 (blue nodes) exist. Due to

the dependency, we cannot “select” the pre�x �rst. However, such

dependency is limited to those pre�xes with common �rst bits but

di�erent pre�x lengths. Thus, we can account for such dependency

using a few more variables. Speci�cally, we show that 32 more

variables per neighbor are enough for IPV4 (in the worst case), and

in two real networks we study, each neighbor only needs 8 and 11

more variables on average (see §5).

3.2 Work�ow of Expresso

We walk through the 3 steps of Expresso with an example.

Example network. Figure 4 shows an example network with two

routers (%'1 and %'2) peering with two ISPs (�(%1 and �(%2). Both

%'1 and %'2 permit two pre�xes (100/2 and 110/2) from the ISPs,

and %'1 sets the local preference of routes from �(%1 to 200 (the

default is 100), in order to prefer �(%1 to �(%2 as the exit to reach

the Internet. %'2 announces an internal pre�x 000/2.

The operators of the network con�gure import/export routing

policies on the two %'s following best practices: attach a speci�c

community (i.e., 300:100) to incoming routes from ISPs, and deny

outgoing routes with that speci�c community towards ISPs. Ad-

ditionally, the session property advertise-community are con�g-

ured between %'s to include communities in all exported routes

towards each other. However, the operatormade amiscon�guration:

forgetting the advertise-community command when con�guring

%'1, which results in a route leak from �(%1 to �(%2.

(1) Symbolic Route Computation (SRC) takes con�gurations

and topology as input, and computes symbolic RIBs. Unlike concrete

RIBs, which contain concrete routes under a speci�c external route

environment, a symbolic RIB contains symbolic routes that can

materialize into di�erent concrete routes under di�erent external

route environments.

In Expresso, a symbolic route is a set of concrete routes, repre-

sented as a tuple of (pln, 0B?, 2><<, ;?, =ℎ, >), where p = ?1?2?3

Expresso: Comprehensively Reasoning About External Routes Using Symbolic Simulation ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

ISP1

AS 100

ISP2

AS 200AS 300

ER1 PR1 PR2 ER2//----------Configuration of PR1----------

1 route-policy im1 permit node 100

2 if-match prefix 100/2 110/2

3 set-local-preference 200

4 add-community 300:100

5 route-policy ex1 deny node 100

6 if-match community 300:100

7 bgp peer ISP1 AS 100 import im1 export ex1

//----------Configuration of PR2----------

1 route-policy im2 permit node 100

2 if-match prefix 100/2 110/2

3 add-community 300:100

4 route-policy ex2 deny node 100

5 if-match community 300:100

6 bgp network 000/2

7 bgp peer ISP2 AS 200 import im2 export ex2

8 bgp peer PR2 AS 300 advertise-community

(n1, "100.*",

C2, 100, ER1, ER1)
(p1l1¬l2n1, "100.*",

C1, 200, PR1, ER1)

(p1l1¬l2n1, "300 100.*",

C1, 100, PR2, ER1)

RIB@PR1

¬p1¬p2l1¬l2, "", C1, 100, PR2, PR2

p1l1¬l2n1, "100.*", C3, 200, ER1, ER1

p1l1¬l2¬n1n2, "200.*", C3, 100, PR2, ER2

FIB@PR1

¬p1¬p2, PR2

p1n1, ER1

p1¬n1n2,PR2

PECs@PR1

¬p1¬p2, [PR2], ARRIVE

p1n1, [ER1], EXIT

p1¬n1n2, [PR2,ER2], EXIT

RIB@PR2

¬p1¬p2l1¬l2, "", C1, 100, PR2, PR2

p1l1¬l2n1, "100.*", C1, 200, PR1, ER1

p1l1¬l2¬n1n2, "200.*", C3, 100, ER2, ER2

FIB@PR2

¬p1¬p2, PR2

p1n1, PR1

p1¬n1n2,ER2

(True,[],?) (p1¬n1n2,[PR2],?)

(p1¬n1n2,

[PR2,ER2],EXIT)

Community Atoms: c1 = 300:100, c2 = others

Append

AS300

Symbolic community lists: C1 = {Ф}, C2 = {Ф, {c1},{c2},{c1,c2}}, C3 = {{c1},{c1,c2}}

(n1, ".*", C2,

100, ER1, ER1)

(p1l1¬l2n1, "100.*",

C3, 200, ER1, ER1)

Match

100/2 110/2

Erase

community

(p1l1¬l2n1, "100.*",

C1, 200, PR1, ER1)

2

2 2

2

2 2

2

2 2

2 2

2 2

n1, l1¬l2 → n1
2

❶

❷

❸

❹

❺

❻

❼ ❽ ❾

❶→❷→❸→❹→❺→❻: symbolic route propagation ❼→❽→❾: symbolic packet forwarding ❻: route leak

Figure 4: An example network with con�gurations and Expresso’s work�ow.

is an IP address ([000, 111]), l = ;1;2 is a pre�x length ([0, 3]),

n = =1=2 is an advertiser condition, 0B? is a regular expression

for AS path, 2><< is a set of community lists; ;? , =ℎ and > is

the local preference, next-hop and originator4, respectively. Re-

turning to the example in Figure 4, the second RIB entry of %'1
(?1;1¬;2=1, “100.*”,�3, 200, �'1, �'1) represents a set of concrete

routes whose pre�xes can either be 100/2 (p = 100, l = 10) or 110/2

(p = 110, l = 10), AS paths start with 100, community lists that

contains 21 (i.e., 300:100, since 21 =
⋂

;∈�3
;), local preference is 100,

and next-hop and originator are both �'1. Finally, the advertiser

condition =1 indicates that any of these routes materialize when

the corresponding pre�x is advertised by �(%1.

Expresso computes symbolic routes by executing the Expresso

path vector protocol (EPVP), a symbolic variant of the Simple Path

Vector Protocol (SPVP) [20], which works as follows. First, for each

external neighbor 8 , EPVP initializes an wildcard symbolic route

(standing for the universe of all possible routes), with advertiser

condition =8 , and all other symbolic �elds wildcarded , e.g., pl←

True, 0B? ← “.*”, 2><< ← 2{21,22 } . Then, EPVP advertises the

symbolic routes to the network, and iteratively calculates the best

(symbolic) routes for each router, until reaching a �xed point. Since

EPVP works on symbolic routes, it must use symbolic versions

of transfer (for transforming or �ltering routes) and merge (for

selecting the best routes) functions. Details are in §4.3.

(2) Symbolic Packet Forwarding (SPF) takes the symbolic RIBs

as input, forwards symbolic packets through the network, and

generates a set of packet equivalence classes (PECs). Each PEC

consists of all concrete packets, each associated with a speci�c

external route environment, that have the same forwarding path in

the network.

Figure 4 shows three PECs whose forwarding path begins at

%'1. The third PEC (?1¬=
2
1=

2
2, [%'2, �'2], EXIT) represents a set

4The originator of a symbolic route should be distinguished from the origin �eld
of a concrete route. For each symbolic route ', Expresso records its propagation path,
and originator ('.>) is the �rst hop of the path.

of packets following the path %'1 → %'2 → �'2, with destIP

matching 1∗∗ and �(%2 (but not �(%1) announcing the /2 pre�xes—

i.e., 100/2, or 110/2, or both (¬=21=
2
2). Note here we replace the =8

variable with =
9
8 variables, where 9 represents the pre�x length.

This is to account for the LPM semantics during packet forwarding

(see §5 for details).

To generate PECs, Expresso converts the symbolic RIBs into

symbolic FIBs, where each FIB entry includes a predicate for the

variables of pl, n, and the output port. As discussed in §3.1, in data

plane, LPM introduces dependency among pre�xes, but the de-

pendency is limited and pre�xes with the same length are still

independent. Therefore, we extract all pre�x lengths (at most 33)

from a RIB entry to generate corresponding FIB entries. The con-

version contains two steps. Firstly, we convert each RIB entry into

several FIB entries, one for each pre�x length. This is done by

iteratively extracting all pre�xes of a speci�c length (longest to

shortest) from the RIB entry. Then, we combine the length and

advertiser condition to form data plane advertiser condition (e.g.,

from ?1;1¬;2=1 to ?1=
2
1). After generating FIBs, SPF follows the

same symbolic forwarding procedure as SRE, i.e., augments each

packet with a symbolic header, i.e., the predicate True (encoding

all destinations and advertiser conditions), and injects it at each

router in the network.

(3) Property Analysis of various routing and forwarding prop-

erties can be done based on output of the above two stages. First,

Expresso can analyze routing properties, e.g., RouteLeakFree and

RouteHijackFree, by checking the existence or absence of speci�c

routes right after the �rst stage SRC. Take RouteLeakFree for ex-

ample, Expresso checks for each neighbor, whether it receives any

route that is originated by another neighbor. As shown in Figure 4,

�'2 receives a route whose originator is �'1 of �(%1, indicating

this is a route of �(%1 leaked by the network to �(%2. Forwarding

properties, e.g., BlackHoleFree, LoopFree, can be analyzed after

the second stage SPF is done, as the analyses require forwarding

paths or �nal states (e.g., ARRIVE and EXIT in Figure 4) of PECs.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Dan Wang, Peng Zhang, and Aaron Gember-Jacobson

Take LoopFree for example: Expresso checks whether there are

PECs whose �nal state is LOOP because of visiting a node twice

during symbolic packet forwarding. As shown in Figure 4, packets

starting from %'1 don’t encounter any loop.

4 Symbolic Route Computation

In this section, we introduce routing algebra and simple path vector

protocol (§4.1), which serve as a framework for SRC. Then we

show how to make routes symbolic (§4.2), and how to operate on

symbolic routes (§4.3).

4.1 Routing Algebra and Simple Path Vector

Protocol

Routing Algebras [24] de�ne the basic semantics of route compu-

tation in the control plane. �(Σ, ⊕, � , 0,∞) is an algebra where:

• Σ is a set of signatures that describes characteristics of a route.

A route has the form A = (3, f), where 3 is the destination

(i.e., a pre�x) and f ∈ Σ is the signature. Taking BGP as

an example, a signature includes local preference, AS path,

communities, etc.

• ⊕ : 2Σ → 2Σ is the merge function, which takes a set of

signatures as input, and selects the most preferred signatures,

considering Equal Cost Multi-Path (ECMP).

• � is a family of transfer functions, with 5DE denoting the trans-

fer function of link (D, E), which processes the signatures

traversing fromD to E . For example, in BGP, when traversing

fromD to E , a signature f ∈ Σ goes through the export policy

(4D) of D �rst, then the import policy 8E of E , which means

5DE = 8E ◦ 4D .

• 0 is the initial signature.

• ∞ is the invalid signature, used to denote the absence of a

route to the destination.

Simple Path Vector Protocol (SPVP) [20] de�nes a �x-point al-

gorithm (Algorithm 1) that takes a network� (+ , �) (+ is the vertex

set and � is the edge set) as input, and iteratively compute the routes

to a destination (i.e., pre�x) using the merge and transfer functions

de�ned by a routing algebra. For each vertex D ∈ + , SPVP uses

�4BCD to track the most preferred (i.e., best) routes, and '4248E43D
to track the routes received from peers. Before the iterations start,

SPVP initializes the �4BCD of each node (line 1) to either an empty

set (i.e., �4BCD ← {}) or a set containing the default signature (i.e.,

�4BCD ← {0}), depending on whether D holds the pre�x. Then,

during each iteration, for each vertex D ∈ + , SPVP �rst collects

candidate routes from its neighbors (line 11):

∀(D, E) ∈ �, '42ED ← '42ED ∪ {5DE (f) |f ∈ �4BCE)},

then merges them with the current best routes (line 12):

�4BCD ← ⊕(�4BCD , '42ED) .

SPVP converges when �4BCD of every vertex D remains unchanged

after an iteration (line 14).

Limitations of SPVP. Although SPVP is widely used by veri�ers

as the control plane engine [10, 13, 17, 22, 29, 30], Expresso cannot

use SPVP for the following reasons. Firstly, SPVP is designed to

compute routes for one pre�x at a time, so we need to run SPVP

(233 − 1) times to cover all pre�xes. Secondly, SPVP is designed to

compute routes for one environment at a time, by including the

external nodes that advertises destination 3 in� , so we need to run

SPVP 2= times to consider the uncertainty of whether each external

neighbor =8 advertises 3 or not.

Therefore, we introduce Expresso Path Vector Protocol (EPVP), a

symbolic variant of SPVP. EPVP operates on symbolic routes (§4.2)

with symbolic versions of initialize, merge and transfer functions

(§4.3).

4.2 Symbolic routes

For BGP, a route advertisement includes pre�x, AS path, communi-

ties, local preference, MED, etc. To consider external environment,

we also include another dimension of environment, a bit vector

indicating whether a neighbor advertises the pre�x or not. Note

the environment dimension is used purely for analysis rather than

modeling route computation in real networks.

In Expresso, a symbolic route ' is de�ned as a set of pre�x-

environment pairs, a set of AS paths, and a set of community lists,

and the shared route attributes:

' = ({(30, 40), (31, 41), · · · }, ⟨{00, 01, · · · }, {20, 21, · · · }, 0CCA)

= (D, ⟨0B?, 2><<, 0CCA ⟩) . (1)

It collectively represents a set of concrete routes, which we call the

unfolding of ' and denote as ':

' = {(3, 4, 0, 2, 0CCA) | (3, 4) ∈ D, 0 ∈ 0B?, 2 ∈ 2><<}. (2)

A symbolic route is a route whose pre�xes and attributes are

symbolic values (variables). Every symbolic route encodes an equiv-

alence class of concrete routes, i.e., routes that are treated the same

by routers in the network. But note that routes that are treated the

same may be in di�erent symbolic routes due to such an encoding.

For example, suppose there are two concrete routes, whose AS

path and community list are “[100], {300:100}” and “[200], {300:200}”,

respectively. Even if they are treated the same by a route �lter, they

can’t be represented by a single symbolic route with a symbolic AS

path and a symbolic community list.

In the following, we show how Expresso encodes each part of a

symbolic route.

IP pre�x.An IP pre�x is a ternary bit (0, 1, and ∗) vector and a pre�x

length (0-32). It can be represented as a predicate (formula) over a

set of boolean variables. Similar to previous veri�ers, Expresso uses

a Binary Decision Diagram (BDD) [11], a canonical representation

for boolean formulas, to encode a symbolic IP pre�x. Speci�cally,

Expresso uses 38 bits (BDD variables) for the symbolic IP pre�x—32

bits for the pre�x and 6 bits for the pre�x length.

Advertiser condition. The advertiser condition speci�es the ex-

ternal route environments under which routes are computed. It is

similar to the failure condition introduced by SRE, which speci�es

the failure scenarios (whether each node or link in the network is

up or down) under which routes are computed. The di�erence is

that failure condition is a global condition for all pre�xes, while ad-

vertiser condition is local, i.e., with respect to a speci�c pre�x in the

symbolic IP pre�x. As a result, di�erent IP pre�xes can multiplex

the advertiser condition of a neighbor.

Suppose the network has = external neighbors, with each peer-

ing with some routers of the network. For the 8th neighbor, we use

a boolean variable (bit) =8 to represent whether the neighbor ad-

vertises a speci�c route or not. Therefore, the advertiser condition

Expresso: Comprehensively Reasoning About External Routes Using Symbolic Simulation ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

is a bit vector of �xed length, and can be encoded with BDD, in a

similar way to pre�x.

Community list. To encode symbolic community lists, we take

inspiration from Bat�sh’s SearchRoutePolicies feature. In par-

ticular, we pre-compute a set of atomic predicates (atoms) over all

communities that appear in the con�gurations. This way, a sym-

bolic community list can be encoded by a set, where each item is

an atom (integer) set that represents a concrete community list.

Operations on community lists are converted to set operations.

For example, suppose there are two communities, 300:100 and

300:[1-9]00, in the con�gurations. Then there are three community

atoms, i.e., 21 = 300:100, 22 = 300:[2-9]00, and 23 represents all

other communities. The symbolic community list representing any

concrete community lists is, � = 2{21,22,23 } . Adding community

300:100 to � equals adding atom 21 to every member set of � , i.e.,

� ← � × (2{21 }/∅) = {{21}, {21, 22}, {21, 23}, {21, 22, 23}}.

ASpath.While Bat�sh’s SearchRoutePolicies also pre-computes

atomic predicates for AS path, we found it really ine�cient5, since

element order matters in AS paths and regex matching is applied to

the whole AS path6. Therefore, Expresso uses automaton (a form

equivalent to regexes) to represent symbolic AS paths. Operations

on AS paths are converted to automaton operations.

For example, the symbolic AS path representing any concrete AS

path is � = “.*” (i.e., any string). When appending AS number 100,

� is updated by the concatenation of the automaton of string “100”

and �, i.e., � ← BCA (“100”).concat(�). When processed by an AS

path �lter matching “.*400” , � is updated by the intersection of the

automaton of regex “.*400” and�, i.e.,�← A4 (“.*400”) .intersect(�).

Other attributes. Expresso uses concrete (default) values for other

attributes (e.g., local preference, origin, andMED). For non-transitive

attributes like local preference, they will be erased when importing

from neighbors, and therefore do not a�ect our analysis. For transi-

tive attributes like MED and origin, although their values may be

non-default in external routes, we choose to make them concrete, in

order to have a deterministic result when comparing two symbolic

routes.

4.3 Processing symbolic routes

Expresso uses EPVP, a variant of SPVP, to compute symbolic routes.

The procedure of EPVP is similar to SPVP, but with a di�erent

initialization process, transfer function, and merge function.

Initialize symbolic routes. Instead of initializing concrete routes

only for internal routers, EPVP initializes symbolic routes for both

internal routers and external neighbors as follows.

(1) For each internal router D, �4BCD is initialized as a symbolic

route withD =
∨

3∈�D
3 (�D is the pre�xes originated byD), 0B? =

“” (empty string), 2><< = {∅} (no communities) and 0CCA having

default values. Note that the environment for every 3 ∈ �D is True,

since it will always be advertised no matter in what environment.

(2) For each external neighbor E , �4BCE is initialized as a symbolic

route with D = =E , 0B? = “.*” (any string), 2><< = 2�% (the power

set of community atoms �%) and 0CCA with default values. The

5Computing atomic predicates for AS path times out in 1 hour on our datasets (§7.2).
6On the contrary, element order doesn’t matter in community list, and regex matching
applies to separate elements in a community list.

above indicates the neighbor advertises an arbitrary set of pre�xes,

and for each advertised pre�x, the AS Path and community list can

be arbitrary.

For example, in Figure 4, the symbolic route of internal node %'2
is initialized to (¬?1¬?2;1¬;2, ⟨“”, {∅}, 100, %'2, %'2⟩), and that of

external�'8 (8 = 1, 2) is initialized to (=8 , ⟨“.*”, 2
{21,22 } , 100, �'8 , �'8 ⟩).

Transfer symbolic routes. Unlike SPVP where a transfer func-

tion (i.e., a node’s route policies) deterministically transforms a

(concrete) route, the transfer function in EPVP may transform a

symbolic route ambiguously. The reason is that a symbolic route

consists of a set of concrete routes, which may be transformed

di�erently by the same transfer function. For example, suppose

there is a symbolic route ' with community list {{21}, {21, 22}},

and a transfer function 5 which (1) matches {21} and sets local

preference to 200, and (2) matches {21, 22} and sets local preference

to 300. Applying 5 on ' will result in two symbolic routes.

Therefore, instead of de�ning a single transfer function as an

if-then-else program in SPVP [20], we model a transfer function

of EPVP as a set of (?A43820C4, 5 D=2C8>=) pairs, each of which am-

biguously transform symbolic routes satisfying the predicate7:

5 = {(U1, 51), (U2, 52), · · · , (U=, 5=)}, (3)

whereU8 is a predicate over a symbolic route, satisfying
∨

8∈[1,=] U8 =

True, and 58 is a transfer function for routes satisfying U8 . Then,

applying the transfer function 5 on a symbolic route ' results in

5 (') = {58 (U8 ∧ ') |8 ∈ [1, =]}, (4)

where U8 ∧ ' means to constrain ' with the predicate U8 . In the

above example, suppose ' = (?1;1¬;2, ⟨{{21}, {21, 22}}, 100⟩) (for

route attributes, we show only symbolic community list and local

preference for simplicity). Then, we have:

5 (') = {(?1;1¬;2, ⟨{{21}}, 200⟩), (?1;1¬;2, ⟨{{21, 22}}, 300⟩)}

Merge symbolic routes. Since a symbolic route is essentially a

set of concrete routes, merging two symbolic routes '1 and '2 is

actually merging every A1 ∈ '1 and every A2 ∈ '2 pairwise, and

we have to consider two cases: (1) A1 and A2 have the same pre�x

and environment, and (2) A1 and A2 have di�erent pre�xes and/or

di�erent environments. For the �rst case, A1 and A2 are comparable,

so only the more preferred one stays after merging '1 and '2. For

the second case, A1 and A2 are incomparable, so they both stay after

merging '1 and '2. Therefore, when merging two symbolic routes,

we can’t select a single best symbolic route. Instead, we drop the

concrete routes in '1 and '2 that cannot be selected as best routes.

Formally, dropping the concrete routes in '2 with respect to '1 is

de�ned as (0CCAB = ⟨0B?, 2><<, 0CCA ⟩, d represents the preference

of 0CCAB , de�ned by routing protocols):

'2 − '1 =

{

(D2, 0CCAB2), if d (0CCAB1) ≥ d (0CCAB2)

(D2 ∧ ¬D1, 0CCAB2), if d (0CCAB1) < d (0CCAB2)
.

This way, merging '1 and '2 is de�ned as:

'1 ⊕ '2 = {'1 − '2, '2 − '1}. (5)

One may wonder how the function d can compare the prefer-

ence of two symbolic routes, whose attributes (i.e., 0B? and 2><<)

are variables. Firstly, community lists are not used for best route

selection, and therefore do not a�ect the comparison. Secondly, as

7How to compute these pairs is shown in Appendix B.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Dan Wang, Peng Zhang, and Aaron Gember-Jacobson

for AS paths, BGP prefers routes with shorter AS path length. To

support this, we choose the path with the shortest length from the

symbolic path as the representative, and use the length of this path

for comparison, e.g., a symbolic AS path “100.*” has a length of 1

during comparison. For example, suppose we have two symbolic

routes (for route attributes, we show only symbolic AS path and

symbolic community list for simplicity, other attributes of '1 and

'2 are identical):

'1 = (?1;1¬;2=1, ⟨“100.*”,�1⟩)

'2 = (?1;1¬;2=2, ⟨“200,200.*”,�3⟩)

'1 is more preferred than '2 since it has “shorter” symbolic AS

path. Merging them results in:

'1⊕'2 = {(?1;1¬;2=1, ⟨“100.*”,�1⟩), (?1;1¬;2¬=1=2, ⟨“200,200.*”,�3⟩)}.

The �rst part of the result represents that all concrete routes in '1
are selected as best routes, since their attributes have higher pref-

erence. The second part of the result represents that the concrete

routes in '2 that have no counter-parts (i.e., having the same pre�x

and environment) in '1 can be selected as best routes, because of

being the only candidate.

Correctness of EPVP.We prove the correctness of EPVP in Ap-

pendix §D.

5 Symbolic Packet Forwarding

5.1 Generating Symbolic FIBs

For each router, Expresso generates a symbolic FIB, an ordered

list of forwarding rules (<0C2ℎ, ?>AC), where<0C2ℎ is a predicate

(boolean formula) over both packet headers and advertiser condi-

tions. The advertiser condition speci�es “when” (some neighbors

advertise a speci�c set of routes) the rule will materialize. Unlike

SRE, Expresso cannot directly convert symbolic RIBs into symbolic

FIBs, since the routes (e.g., pre�xes) are symbolic.8

Taking a symbolic route ?1;2=1 for example, it contains pre�xes

with two lengths (i.e., 100/1, 100/3, 101/3, 110/3, and 111/3). When a

packet with destIP 101 comes, it will �rstly match the 101/3 pre�x

if it exists (=1 = 1); otherwise, if the rule does not exist (=1 = 0),

the packet will match 100/1 if it exists (=1 = 1, contradicting with

=1 = 0). Therefore, using a single variable =1 to represent the

condition ISP1 advertises the route is not enough any more.

To solve this problem, we need more variables for advertiser

condition. Rather than using one variable for each pre�x ((233 − 1)

variables in total), we observe that one variable for each pre�x

length (33 variables in total) is su�cient: if a symbolic route has

multiple pre�x lengths, then we split it into multiple routes, one for

each possible pre�x length. In addition, if the advertiser condition

of the original route has a variable =8 then for each of these pre�x

length 9 , create a new advertiser condition =
9
8 to replace =8 . There-

fore, in practice, we need less than 32 additional variables: in two

real network snapshots we study, each neighbor only needs 8 and

11 more variables on average. Returning to the previous example,

the original symbolic route is split to two symbolic routes, one for

each pre�x length—?1¬;1;2=1 and ?1;1;2=1. Then, we replace the

advertiser condition =1 with new advertiser conditions, i.e., ?1=
1
1

8SRE also terms the route as symbolic, since it carries a topology condition, while
the routes themselves (pre�xes and attributes) are concrete. In contrast, the routes in
Expresso are symbolic.

and ?1=
3
1. Note that the pre�x length bit ;8 is not needed anymore

since it become concrete, as well as =01 and =
2
1.

5.2 Computing PECs

After generating symbolic FIBs, Expresso follows a similar process

to compute packet equivalence classes (PECs). In the following, we

brie�y show the process and more details can be found in the paper

of SRE.

Computing port predicates. Before simulating the forwarding

of packets, Expresso �rst pre-computes port predicates, in a similar

way with [28, 30]. A port predicate is a boolean formula encoding

the set of packets forwarded to that port (forwarding predicates),

or allowed by a speci�c port (ACL predicates). Such an approach

makes the simulation more e�cient, as will be seen later.

Forwarding symbolic packets. Then, Expresso augments each

packet header with an advertiser condition, a predicate over boolean

variables =
9
8 , indicating whether the neighbor 8 advertises a pre�x of

length 9 or not. Initially, Expresso injects a symbolic packet at each

router (either internal or external), The symbolic packet matches

all packet headers and advertiser conditions, by setting the packet

header and advertiser variables to True. When the packet reaches

a port of a router, the router creates a new replica of the packet,

and computes the conjunction of it with the predicate of the port,

and lets the replica traverse the port.

Obtaining PECs. This forwarding of symbolic packets continues

until reaching a port which (1) has been visited twice with the

same symbolic packet (LOOP), (2) matches a rule that drops the

packet (BLACKHOLE), (3) is directly connected to the destination

pre�x (ACCEPTED), or (4) is not connected to any other routers

(EXIT).We term the above states (i.e., LOOP, BLACKHOLE, ARRIVE

and EXIT) as the �nal state of the symbolic packets. After every

symbolic packet reaches its �nal state, Expresso obtains a set of

PECs. Each PEC is represented by a 3-tuple (?:C, ?0Cℎ, 5 B), where

?0Cℎ is the forwarding path, ?:C is the predicate over packet header

and advertiser condition, and 5 B is the �nal state of packets in the

PEC.

6 Property Analysis

This section introduces how Expresso analyzes routing and for-

warding properties de�ned in §2.2 (§6.1 and §6.2, respectively).

Then, we show how Expresso can be used to check other properties

that are related to routes or packets §6.3.

Firstly, we de�ne some notations used below. We use +� and +�
(+ = +� ∪+�) to denote the set of internal and external nodes of the

network, respectively. For D, E ∈ + , we use %��B (D) (%��B (D, E)) to

denote the set of PECs whose forwarding path starts from D (and

ends at E). The set of internal and external pre�xes are represented

as �� and �� , respectively. For each symbolic route ', we use '.>

to denote its originator.

6.1 Routing properties

Expresso analyzes the routing properties by checking the existence

or absence of speci�c routes in speci�c routers’ symbolic RIBs.

RouteLeakFree speci�es that routes received from a peer/provider

should never be leaked to another peer/provider. Checking this

property can detect cases where the network becomes a transit

Expresso: Comprehensively Reasoning About External Routes Using Symbolic Simulation ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

between peers/providers. Expresso checks this property by: for

every external node D ∈ +� , and every symbolic route ' ∈ RIB(D),

check if ' originated from an internal node or itself, i.e.,

'.> ∈ +� ∪ {D}.

RouteHijackFree speci�es that routes originating from a neighbor

should never be selected as the best routes for an internal pre�x.

Checking this property can prevent internal tra�c of the network

from being leaked to the Internet. Expresso checks this property

by: for every internal node D ∈ +� , every internal pre�x 3 ∈ �� ,

and every symbolic route ' ∈ RIB(D), if ' is an internal route and

contains pre�x 3 , check whether its advertiser condition for pre�x

3 is True (i.e., no external route to 3 will be more preferable than

the internal route under any environment), i.e.,

('.> ∈ +�) ∧ ('.D ∧ 3 ≠ 0) → Cond('.D ∧ 3) .

Cond() is extracting the advertiser condition from a BDD predicate.

E.g., Cond(¬?1¬?2) = T, Cond(?1=
2
1) = =21.

6.2 Forwarding properties

Expresso checks forwarding properties based on the PECs.

Tra�cHijackFree speci�es that tra�c among internal nodes of a

network should only traverse the network’s own routers. Checking

this property can prevent internal tra�c from being hijacked by

external routers. Expresso checks this property by: for every inter-

nal node D ∈ +� , and every PEC ?42 ∈ %��B (D), if its �nal state is

EXIT, its packet doesn’t overlap with internal pre�xes:

?42.5 B = EXIT→ ¬(?42.?:C ∧ ��).

6.3 More properties

Besides the above properties, Expresso can be used to check any

properties that are related to the existence or absence of speci�c

routes and/or packets. In the following, we discuss two examples.

One example property is BlockToExternal, de�ned by Bagpipe

[27]. Aswill be shown in §7.3, the property speci�es that routes with

the BTE community should never be exported to any neighbors.

Another example property is EgressPreference. When there

are multiple paths to the same Internet pre�x, an internal router

should choose the path according to a preference order. Checking

this property can ensure the tra�c exits the network at tje desired

egress point. Speci�cally, for an internal node D ∈ +� , an Internet

pre�x 3 ∈ �� , and a preference order of neighbors 41 > 42 > · · · >

4= (prefer 41 the most), the EgressPreference property speci�es

that for each 8 ∈ [1, = − 1] and 9 ∈ [8 + 1, =]:

2>=38 → ¬2>=3 9 ,

where 2>=38 = Cond(
∨

?42∈%��B (D,48) (?42.?:C ∧3)) represents the

advertiser condition for packets whose destination is 3 and whose

egress point is 48 .

7 Evaluation

Implementation. We implemented Expresso with 28K lines of

Java codes. Expresso uses the JDD library [26] for BDD operations,

and Bat�sh [2] to parse con�guration �les.

Datasets. We evaluate Expresso on three sets of con�gurations

(Table 1):

• Two WAN con�guration snapshots of a large cloud service

provider (CSP). They were collected at di�erent times, with

Table 1: Statistics of the datasets.

dataset nodes links peers pre�xes
con�g

lines

CSP

WAN

(old)

region1 $(10) $(10) $(10) $(200) $(8k)

region2 $(5) $(10) $(20) $(400) $(8k)

region3 $(10) $(30) $(20) $(600) $(15k)

region4 $(10) $(30) $(40) $(2k) $(22k)

full $(30) $(100) $(90) $(3k) $(54k)

CSP WAN (new) $(130) $(330) $(220) $(10k) $(220k)

Internet2 $(10) $(100) $(300) $(32k) $(100k)

the new one collected two years after the old one. Both

datasets consist of con�gurations for only a subset of WAN

devices like peering routers.

• The Internet2 con�guration snapshot publicly available at

[7], which has been used in Bagpipe [27]. There are 10 routers

and ∼100K lines of Juniper con�gurations in total.

Comparison.We compare Expresso with Minesweeper and Bag-

pipe. For Bagpipe, we use the results reported in its paper [27].

For Minesweeper, we use its source code available at [8]. Since

Minesweeper does not support checking of routing properties like

RouteLeakFree, and only partially models the longest pre�x match

(LPM) by selecting best routes �rstly based on pre�x length, we

extend it (with 3K LOC) and call it Minesweeper∗ (details in Ap-

pendix C). We do not compare with other veri�ers (e.g., Bat�sh,

ShapeShifter, and SRE), because these tools consider concrete en-

vironments (every external neighbor advertises a speci�c set of

routes under each environment), and have to enumerate all possi-

ble environments, which cannot �nish in reasonable time (1 day).

We enumerated 1000 environments (an extremely small portion of

all environments) using Bat�sh, and it already took 2 hours.

Setup. The following evaluations are run on a Linux server with

two 12-core Intel Xeon CPUs @ 2.3GHz and 256G RAM.

7.1 Property Violations Found by Expresso

We run Expresso on the two con�guration snapshots from the CSP,

and check three properties, i.e., RouteLeakFree, RouteHijackFree,

and TrafficHijackFree (de�ned in §6).

Summary of found violations. Expresso found 63 (124) prop-

erty violations in the old (new) snapshot, as shown in Table 2.

After con�rming with the operators, some of these violations are

due to miscon�guration of route policies (the “�xed” and “will �x”

columns), while some of them are due to other reasons (the “oth-

ers” column), including (1) incompleteness of the snapshot, and (2)

uninteresting cases. We haven’t report the uncon�rmed violations

to the operators due to time limit, and we will keep working with

the operators to con�rm them. In the following, we show three

examples of the violations found by Expresso.

Violation 1: Route Leak. Figure 5(a) shows one of the route leaks

Expresso �nds: when �(%0 announces a route to a /18 pre�x, the

provider will export the route to �(%1 , providing free transit from

�(%1 to �(%0 . After inspecting the con�gurations, we found that

the leaked pre�x, if announced by �(%0 , will be permitted by the

import policy on %'1, propagated to the '', re�ected to %'2, and

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Dan Wang, Peng Zhang, and Aaron Gember-Jacobson

(b) A route hijack (c) A traffic hijack

PR1

PR2

RR

ISPa

(a) A route leak

ISPb

BGP{/18}

BGP{/18}

PR1

RR

ISPa

BGP{/0}

Pkt{/24}

DR2

BGP{/24}

PacketsRoutes

AS200

AS300

AS100 AS100

AS200

PR1

PR2

RR

ISPa

BGP{/31}

AS200

AS100

Connect{/31} PR2

Pkt{/24}

route leak
route hijack

traffic hijack

Figure 5: Examples of property violations found by Expresso in the WAN of a large cloud service provider.

Table 2: Summary of violations found by Expresso on the old

snapshot and new snapshot.

total
con�rmed

uncon�rmed
�xed will �x others

old

RouteLeak 3 1 0 1 1

RouteHijack 53 1 0 6 46

Tra�cHijack 7 0 0 5 2

new

RouteLeak 36 1 2 1 32

RouteHijack 70 0 1 9 60

Tra�cHijack 18 0 0 14 4

permitted by the export policy on %'2 to �(%1 . After con�rming

with the operators, we �nd this route leak is actually caused by the

the incompleteness of snapshot. The leaked pre�x is actually an

internal pre�x announced by a router in one of their datacenters,

and the route announced by the internal router has a higher local

preference than external routes. However, it is still valuable to the

operators, because it reveals a miscon�guration of the import policy

on %'1—it should deny all external routes for internal pre�xes,

but the routes are not �ltered due to a missing entry. This makes

route leaks possible on failures: when the datacenter router fails to

announce the pre�x due to interface or link failures, the route will

be leaked.

Violation 2: Route Hijack. Figure 5(b) shows one of the route

hijacks Expresso �nds: if �(%0 announces a route to an internal

/31 pre�x of the provider, the data centers would choose to use

�(%0 (instead of the CSP’s WAN) to reach the /31 pre�x. We inspect

the con�guration �les and �nd the hijacked pre�x belongs to an

interface of a peering router %'2, and the route for the pre�x is

redistributed into BGP with default local preference (i.e., 100). If a

route for that pre�x is advertised by some peering ISPs connecting

to %'1, it will not be �ltered by %'1, and %'1 will set its local pref-

erence to 200. The route re�ector '' will select the route received

from the ISP as the best route, and re�ect it to other routers. The op-

erators acknowledged this was a miscon�guration and corrected it

by adding the /31 pre�x entry into %'1’s incoming deny list against

�(%0 .

Violation 3: Tra�c Hijack. Figure 5(c) shows one of the tra�c

hijacks Expresso found: %'1 has no route to an internal /24 pre�x

hosted by �'2. Since %'1 has default routes with �(%0 as the next

hop, when packets destined for the internal pre�x reach %'1, the

packets will match the default route and be sent to �(%0 . After

inspecting the con�gurations, we found the cause: after the internal

route leaves �'2 and reaches '', the route is denied by the export

policy of '' to %'1. The operators indicated that such a policy

was intentional—they want tra�c towards �'2 to enter the cloud

at %'2, but not %'1. In addition, since %'1 itself will not generate

tra�c for the pre�x, this tra�c hijack will never happen in reality.

Such an uninteresting violation can be �ltered by specifying where

tra�c can originate, which is left as one of our future work. Finally,

this violation revealed the con�guration was not following best

practice, i.e., %'1 should accept the internal route, but not export

the route to �(%0 .

7.2 Performance on the CSP’s WAN

In the following, we evaluate the running time of Expresso, and

compare the results with Minesweeper*, with the two CSP snap-

shots. For a fair comparison with Minesweeper*, which makes AS

path length instead of AS path symbolic, we also include the results

of Expresso-, which uses concrete, instead of symbolic, AS paths

for symbolic routes.

Running time vs. number of neighbors. Figure 6(a) shows the

running time of Expresso andMinesweeper* to check RouteLeakFree

on the old snapshot, with a di�erent number of external neigh-

bors. Generally, Expresso is 2-4 orders of magnitude faster than

Minesweeper*. Here, the running time for Minesweeper∗ is higher

than those reported in its paper, since our extension leads to more

complex SMT encoding, which leads to a 10× slow down. 9

Running time vs. network size. To evaluate how Expresso scales

with network sizes, we use it to check RouteLeakFree property on

the four individual regions and full snapshots, and compare with

Minesweeper*. As shown in Figure 6(b), Expresso is more scalable

with network sizes, and is always at least 1 order of magnitude

faster than Minesweeper*.

Running time vs. protocol features. Figure 6(c) shows the run-

ning time when modeling a di�erent set of protocol features (AS

path, community). We randomly choose 10 external neighbors

9We also run the original version ofMinesweeper, which returned inconsistent answers,
due to partial modeling of the longest-pre�x-match.

Expresso: Comprehensively Reasoning About External Routes Using Symbolic Simulation ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

100

101

102

103

104

105

106

10 20 30 40 50 60 70 80 90

Timeout (1 day) Timeout (1 day)

T
im

e
 (

s
)

(a) Runtime vs. Num of ext-neighbors

Minesweeper* Expresso Expresso-

10-1

100

101

102

103

104

105

106

region1

region2

region3

region4
full

old

full
new

Timeout (1 day) Timeout (1 day)

T
im

e
 (

s
)

(b) Runtime vs. Network size

100

101

102

103

fullold fullnew

Timeout (1 day) Timeout (1 day)

T
im

e
 (

s
)

(c) Runtime vs. Protocol features

none
t
t + c
t + c + a

Figure 6: Running time of Minesweeper*, Expresso, and Expresso- when there are (a) di�erent numbers of neighbors and

(b) di�erent network sizes, and (c) the running time of Expresso for di�erent protocol features, including tra�c policy (‘t’),

symbolic community (‘c’), and symbolic AS path (‘a’).

100

101

102

103

104

region1

region2

region3

region4
full

old

full
new

Timeout (1 hour) Timeout (1 hour)

T
im

e
 (

s
)

(a) Symbolic communities

Atomic predicate

100

101

102

103

104

region1

region2

region3

region4
full

old

full
new

Timeout (1 hour) Timeout (1 hour)

T
im

e
 (

s
)

(b) Symbolic AS path

Automaton

Figure 7: Runtime of Expresso using automaton or atomic

predicate represented (a) symbolic communities, and (b) sym-

bolic AS path.

Table 3: Runtime (in seconds) of SRC, SPF and property anal-

ysis.

SRC
Routing Prop

Analysis
SPF

Forwarding Prop

Analysis

region1 1.028 0.025 0.552 0.006

region2 1.307 0.042 0.728 0.008

region3 1.690 0.034 0.428 0.008

region4 1.561 0.037 0.304 0.007

full(old) 2.770 0.067 0.734 0.007

full(new) 10.030 0.182 4.054 0.011

and check both routing property and forwarding property (i.e.,

RouteLeakFree and TrafficHijackFree). The result shows that

modeling community incurs a high overhead, due to the complexity

of computing atomic predicates for communities.

Automaton vs. atomic predicates. Figure 7 shows the running

time of using automaton and atomic predicate to encode symbolic

communities and symbolic AS path. It shows that for symbolic

communities, using atomic predicate is more e�cient, while for

symbolic AS path, is the opposite.

Running time for each stage. Table 3 shows the running time

of Expresso for the symbolic route computation (SRC), symbolic

Table 4: Performance of Bagpipe,Minesweeper* and Expresso

on the Internet2 to check BlockToExternal.

Bagpipe Minesweeper* Expresso Expresso -

runtime (s) 28,594 (8h) 2,282 655 338

memory (GB) - 45 12 12

violations 5 0 4 4

packet forwarding (SPF), and property analysis, on both the old and

the new snapshot, with 10 randomly chosen external neighbors.

Memory usage. Figure 8 shows the corresponding memory us-

age of Minesweeper and Expresso for the experiments shown in

Figure 6.

7.3 Performance on the Internet2

Weuse the public Internet2 dataset, and compare the performance of

Expresso, Bagpipe [27], and Minesweeper [12]. Speci�cally, we use

the three veri�ers to check the property BlockToExternal, which

was introduced by Bagpipe. This property ensures that routers

of the Internet2 should not export any routes with a community

named BTE to any of their external neighbors. It is checked for

every external node D ∈ +� , and every symbolic route ' ∈ RIB(D),

if ' doesn’t have the BTE community: BTE ∉ '.� .

As shown in Table 4, Bagpipe found 5 violations in total, while

Expresso found 4 of them. A possible explanation is that Bagapipe

reported there were 274 neighbors, while Expresso only recognized

266 neighbors. Minesweeper* did not �nd any violations. For run-

ning time, Bagpipe took 8 hours to �nish, while Expresso only took

less than 6 minutes (without considering symbolic communities

or AS paths), In addition, Expresso also used less memory than

Minesweeper*.

8 Limitations

Limited support for symbolic route attributes. Expresso uses

concrete (default) values for some transitive BGP attributes like

MED (Multi-Exit Discriminator). In addition, when comparing two

symbolic routes, since a symbolic AS path contains multiple con-

crete AS paths, which may have di�erent lengths, we use the short-

est AS path length to represent the length of a symbolic AS path.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Dan Wang, Peng Zhang, and Aaron Gember-Jacobson

100

101

102

10 20 30 40 50 60 70 80 90

M
e
m

o
ry

 (
G

B
)

(a) Memory vs. Num of ext-neighbors

Minesweeper* Expresso Expresso-

100

101

102

region1

region2

region3

region4
full

old

full
new

M
e
m

o
ry

 (
G

B
)

(b) Memory vs. Network size

100

101

fullold fullnew

M
e
m

o
ry

 (
G

B
)

(c) Memory vs. Protocol features

none
t
t + c
t + c + a

Figure 8: Memory usage of Minesweeper*, Expresso, and Expresso- when there are (a) di�erent numbers of neighbors and

(b) di�erent network sizes, and (c) the memory usage of Expresso for di�erent property features, including tra�c policy (‘t’),

symbolic community (‘c’), and symbolic AS path (‘a’).

Thus, Expresso may miss property violations caused by external

routes with non-default MED values or non-shortest AS path.

Limited support for route dependencies. Expresso assumes

BGP depends on IGP, and lets IGP converge �rst. Therefore, it

doesn’t support arbitrary dependency, e.g., IGP depends on BGP by

redistributing BGP routes. In addition, Expresso doesn’t support

route aggregation during control plane execution. To support it, we

should use more variables for each external neighbor, as discussed

in §3.1. Finally, Expresso doesn’t support BGP conditional advertise-

ment, which allows the router to control the advertisement of some

routes bases on the existence or absence of some other pre�xes in

the routing table [5].

No support for arbitrary schedule. EPVP computes symbolic

routes, which is essentially a batch of concrete routes. Therefore,

it may result in a situation when EPVP cannot converge but real-

world route computations converge (di�erent routes computed with

di�erent schedules).

9 Conclusion

Expresso is a general and scalable network veri�er that can compre-

hensively reason about external routes. Expresso �rst symbolically

executes the network control plane to discover route equivalence

classes (RECs), to scale to the colossal external route space. Ex-

presso then symbolically executes the network data plane to dis-

cover packet equivalence classes (PECs), to scale to the large header

space. On top of RECs and PECs, Expresso can check multiple kinds

of routing and forwarding properties. Our future work includes

overcoming the limitations of Expresso.

Acknowledgement.We thank our Shepherd Aurojit Panda, and all

the anonymous SIGCOMM reviewers for their valuable comments

and suggestions. This work is partially supported by the National

Natural Science Foundation of China (No. 62272382). Peng Zhang

is the corresponding author of this paper.

This work does not raise any ethical issues.

References

[1] [n. d.]. ARTEMIS. https://labs.ripe.net/author/vasileios_kotronis/artemis-
neutralising-bgp-hijacking-within-a-minute/.

[2] [n. d.]. Bat�sh. https://github.com/bat�sh/batfish.
[3] [n. d.]. BGPalerter. https://github.com/nttgin/BGPalerter.
[4] [n. d.]. Cloudfare Radar. https://radar.cloudflare.com/.

[5] [n. d.]. Con�gure and Verify the BGP Conditional Advertisement Feature. https:
//www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/1613
7-cond-adv.html.

[6] [n. d.]. Google leaked pre�xes and knocked Japan o� the Internet. https://www.
internetsociety.org/blog/2017/08/google-leaked-prefixes-knocked-japan-off-
internet/.

[7] [n. d.]. Internet2 - Visible Backbone. https://vn.net.internet2.edu/Internet2/.
[8] [n. d.]. Minesweeper. https://github.com/bat�sh/batfish/releases/tag/2021-03-

16-minesweeper.
[9] [n. d.]. RIPE NCC. https://www.ripe.net/.
[10] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya Akella. 2020.

Tiramisu: Fast and General Network Veri�cation. In USENIX NSDI.
[11] Henrik Reif Andersen. 1997. An introduction to binary decision diagrams. Lecture

notes, available online, IT University of Copenhagen (1997).
[12] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A general

approach to network con�guration veri�cation. In ACM SIGCOMM.
[13] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2020. Abstract

interpretation of distributed network control planes. In ACM POPL.
[14] Matthew L Daggitt, Alexander JT Gurney, and Timothy G Gri�n. 2018. Asyn-

chronous convergence of policy-rich distributed Bellman-Ford routing protocols.
In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication. 103–116.

[15] Seyed K Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd Millstein, Vyas
Sekar, and George Varghese. 2016. E�cient network reachability analysis using
a succinct control plane representation. In USENIX OSDI.

[16] Nick Feamster and Hari Balakrishnan. 2005. Detecting BGP con�guration faults
with static analysis. In Proceedings of the 2nd conference on Symposium on Net-
worked Systems Design & Implementation-Volume 2. 43–56.

[17] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govin-
dan, Ratul Mahajan, and Todd Millstein. 2015. A general approach to network
con�guration analysis. In USENIX NSDI.

[18] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and Ratul Mahajan.
2016. Fast control plane analysis using an abstract representation. In ACM
SIGCOMM.

[19] Nick Giannarakis, Devon Loehr, Ryan Beckett, and David Walker. 2020. NV: an
intermediate language for veri�cation of network control planes. In Proceedings
of the 41st ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI).

[20] Timothy G Gri�n, F Bruce Shepherd, and Gordon Wilfong. 2002. The stable
paths problem and interdomain routing. IEEE/ACM Transactions On Networking
10, 2 (2002), 232–243.

[21] John F Lucas. 1990. Introduction to Abstract Mathematics. Rowman & Little�eld,
187.

[22] Santhosh Prabhu, Kuan-Yen Chou, Ali Kheradmand, P Godfrey, and Matthew
Caesar. 2020. Plankton: Scalable network con�guration veri�cation through
model checking. In USENIX NSDI.

[23] Divya Raghunathan, Ryan Beckett, Aarti Gupta, and DavidWalker. 2022. ACORN:
Network Control Plane Abstraction using Route Nondeterminism. In CONFER-
ENCE ON FORMAL METHODS IN COMPUTER-AIDED DESIGN–FMCAD 2022.
261.

[24] Joao L Sobrinho. 2005. An algebraic theory of dynamic network routing.
IEEE/ACM Transactions on Networking 13, 5 (2005), 1160–1173.

[25] Samuel Ste�en, TimonGehr, Petar Tsankov, Laurent Vanbever, andMartin Vechev.
2020. Probabilistic Veri�cation of Network Con�gurations. In ACM SIGCOMM.

https://labs.ripe.net/author/vasileios_kotronis/artemis-neutralising-bgp-hijacking-within-a-minute/
https://labs.ripe.net/author/vasileios_kotronis/artemis-neutralising-bgp-hijacking-within-a-minute/
https://github.com/batfish/batfish
https://github.com/nttgin/BGPalerter
https://radar.cloudflare.com/
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/16137-cond-adv.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/16137-cond-adv.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/16137-cond-adv.html
https://www.internetsociety.org/blog/2017/08/google-leaked-prefixes-knocked-japan-off-internet/
https://www.internetsociety.org/blog/2017/08/google-leaked-prefixes-knocked-japan-off-internet/
https://www.internetsociety.org/blog/2017/08/google-leaked-prefixes-knocked-japan-off-internet/
https://vn.net.internet2.edu/Internet2/
https://github.com/batfish/batfish/releases/tag/2021-03-16-minesweeper
https://github.com/batfish/batfish/releases/tag/2021-03-16-minesweeper
https://www.ripe.net/

Expresso: Comprehensively Reasoning About External Routes Using Symbolic Simulation ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

[26] Arash Vahidi. [n. d.]. JDD, a pure Java BDD and Z-BDD library. https://bitbucke
t.org/vahidi/jdd/.

[27] Konstantin Weitz, Doug Woos, Emina Torlak, Michael D Ernst, Arvind Krish-
namurthy, and Zachary Tatlock. 2016. Scalable veri�cation of border gateway
protocol con�gurations with an SMT solver. In ACM OOPSLA.

[28] Hongkun Yang and Simon S Lam. 2013. Real-time veri�cation of network prop-
erties using Atomic Predicates. In IEEE ICNP.

[29] Fangdan Ye, Da Yu, Ennan Zhai, Hongqiang Harry Liu, Bingchuan Tian, Qiaobo
Ye, Chunsheng Wang, Xin Wu, Tianchen Guo, Cheng Jin, et al. 2020. Accuracy,
Scalability, Coverage: A Practical Con�guration Veri�er on a Global WAN. In
ACM SIGCOMM.

[30] Peng Zhang, Dan Wang, and Aaron Gember-Jacobson. 2022. Symbolic Router
Execution. In Proceedings of the ACM SIGCOMM 2022 Conference (Amsterdam,
Netherlands) (SIGCOMM ’22). Association for Computing Machinery, New York,
NY, USA, 336–349. https://doi.org/10.1145/3544216.3544264

Appendices are supporting material that has not been peer-reviewed.

A Simple Path Vector Protocol Algorithm

Algorithm 1 shows the algorithm for SPVP.

Algorithm 1: SPVP(� (+ , �))

Input:� (+ , �) : the topology of the network, where+ is the vertex

set, and � : + × + is the edge set.

Input: 3 : the considered pre�x.

Output: �4BCD : the converged routing table consisting of all best

routes.

// initialize routes for nodes

1 foreach D ∈ + do

2 �4BCD ← {};

3 if D announces 3 then

4 �4BCD ← �4BCD ∪ {0};

// fixed-point computation

5 2>=E4A643 ← 5 0;B4 ;

6 while ¬2>=E4A643 do

7 2>=E4A643 ← CAD4 ;

8 foreach D ∈ + do

9 '42ED ← {};

10 foreach (D, E) ∈ � do

11 '42ED ← '42ED ∪ { 5DE (f) |f ∈ �4BCE) };

12 �4BCD ← ⊕(�4BCD , '42ED) ;

13 if �4BCD has changed then

14 2>=E4A643 ← 5 0;B4 ;

B Algorithm for Transfer Function

Algorithm 2 shows the algorithm to compute the complete and

non-overlapping unambiguous transfer function set for a transfer

function.

The number of unambiguous transfer functions is decided by the

number of unique processing �ows in the transfer function. The

matching predicates (i.e., U8 , 8 ∈ [0, =]) are complete (Equation (6))

and non-overlapping (Equation (7)), that is, a concrete route A can

match one and only one matching predicate:

∃8 ∈ [0, =] : U8 ∧ A (6)

∀8, 9 ∈ [0, =], 8 ≠ 9 : (U8 ∧ A) → ¬(U 9 ∧ A) (7)

C Modi�cation to Minesweeper

We made the following two modi�cations to Minesweeper, so that

it can check the properties that we list in §2.2.

Algorithm 2: transfer(5)

Input: 5 : a transfer function.

Output: 5̂ = { (U0, 50), · · · , (U=, 5=) }: a list of match-action pairs.

1 5̂ ← {};

// Predicate for unmatched routes. Initially True.

2 U ← True;

3 8 ← 0;

4 foreach AD;4 in Rules(5) do

// Routes that can match this rule but none of the

previous rules.

5 U8 ← Match(AD;4, U);

6 58 ← Actions(AD;4);

7 if =>34.<>34 ← DENY then

// Add the deny action.

8 58 ← 58 (') = ∅;

9 if U8
≠ False then

// Update the predicate for unmatched routes.

10 U ← U ∧ ¬U8 ;

11 5̂ ← 5̂ ∪ { (U8 , 58) };

12 8 ← 8 + 1;

// Deny unmatched routes by default.

13 5̂ ← 5̂ ∪ { (U, 58 (') = ∅) };

(1) Correcting longest pre�x match. The open source version

of Minesweeper does not encode the longest pre�x match as a

data plane packet forwarding principal. Instead, it encodes it as

a control plane best route selection principal. Speci�cally, when

Minesweeper selects per-protocol/overall best routes, it compares

the pre�x lengths of di�erent routes. Thus, it may drop shorter pre-

�xes because of low priority, which wrongly prevents the further

propagation of shorter pre�xes10. However, in real networks, the

shorter pre�xes will continue to propagate and may cause rout-

ing property violations. Therefore, we separate the encoding of a

network in Minesweeper into multiple control planes (one for a

single pre�x length) and one data plane, let di�erent control planes

select their best routes independently and the data plane selects

the route for forwarding from all control planes’ routes according

to longest-pre�x-match.

(2) Checking routing properties. We extend Minesweeper to

check routing questions (e.g., does the network satisfy no free tran-

sit). While Minesweeper checks forwarding properties by de�ning

a global symbolic packet and constraining all symbolic routes ac-

cording to its destination IP address, we de�ne a global symbolic

pre�x and constrain all symbolic routes according to it, thus �nd a

routing property violation (e.g. a route leak) of a pre�x or verify

there’s no routing property violations.

D Correctness Proof for EPVP

D.1 Asynchronous schedule and network states

While a routing algebra de�nes the basic operations routers per-

form to modify messages, it does not say how such messages are

processed on a given topology. Each device inspects the routing

10Essentially, this violates the principle that computations of di�erent routes are
independent.

https://bitbucket.org/vahidi/jdd/
https://bitbucket.org/vahidi/jdd/
https://doi.org/10.1145/3544216.3544264

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Dan Wang, Peng Zhang, and Aaron Gember-Jacobson

messages from its neighbors after applying neighbor-speci�c trans-

fer functions 5 ∈ � , and then merges the messages using merge

function ⊕, until the network reaches a �xed point. This com-

putation is complicated by the fact that messages are exchanged

asynchronously and can be reordered.

Therefore, inspired by [13] and [14], we de�ne an asynchronous

execution schedule, which uses a linear notion of time captured by

the set of time steps T .

In the following, we use % (|% | = 233 − 1) to represent the set of

all pre�xes, and � (+ , �) to represent a network topology, where +

is the set of vertexes (+ = +� ∪+� , where +� and +� are the set of

internal and external vertexes respectively), and � : + ×+ is the

set of edges.

Asynchronous Schedule. An asynchronous schedule is a tuple

) = (g, l) with respect to a network topology � (+ , �), where:

• g : T → 2+ is an execution schedule that maps a time step

to the set of vertices that process routes at that time step.

• l : T → + → + → T is a trace back function where

l (C,D, E) gives the time step where the information used

at node D at time C was sent by node E . We require that

l (C,D, E) < C , i.e., disseminating routing advertisements

from one node to another takes a non-zero amount of time.

Network State. A network state is a |% | × |+ | matrix (, where (?,D
represents the route to pre�x ? on node D. An initial network state

� is a special network state, with �?,D denotes the initial route to

pre�x ? on node D. �?,D is typically 0 if node D initially announces

pre�x ? , otherwise∞.

Given an asynchronous schedule) = (g, l), a network’s state

at any time C can be de�ned as:

(0?,D = �?,D

(C?,D =

{

(C−1?,D , if D ∉ g (C)

�?,D ⊕ (
⊕

(D,E) ∈� 5DE ((
l (C,D,E)
?,E)) if D ∈ g (C)

After zero time steps, the state at node D is given by the initial state

� . To �nd the state after time step C for node D, it checks if D is

currently scheduled to process route updates (D ∈ g (C)). If not, then

the state at node D is the same as at time step C − 1. Otherwise, node

D will update its state by merging the last routes it has learned from

each neighbor under schedule l .

Network Environment. For a network with external neighbors,

a network environment is a concrete state which indicates for each

pre�x and neighbor, whether this neighbor announces this pre�x or

not. Since+ contains external nodes of the network, the initial state

� uniquely determines a network environment. In the following,

we denote the universe set of network environments as E, with

|E | = 2 |% |× |+� | . The initial state that determines environment 4 ∈ E

is denoted as �4 .

Combined Network State. Given an asynchronous schedule, a

network’s state at time C di�ers for di�erent initial states (i.e., dif-

ferent environments), we de�ne a combined network state S by

de�ning for each pre�x ? , node D and environment 4 . That is,

I?,D,4 = �?,D,4

S
C
?,D,4 = (C?,D,4

=

{

(C−1?,D,4 if D ∉ g (C)

(�?,D,4 ⊕
⊕

(D,E) ∈� 5DE ((
l (C,D,E)
?,E,4)) if D ∈ g (C)

Mapping relation. In the following, we de�ne the mapping rela-

tion between concrete routes and symbolic routes.

Definition 1. Given a symbolic route ' = (D, 0CCAB), its un-

folding, denoted as ', is the concrete route set it represents. That is,

' = {(3, 4, 0CCAB) | (3, 4) ∈ D}. Given a symbolic route set R, its un-

folding, denoted as R, is the union of the unfoldings of the symbolic

routes in it. That is, R =
⋃

'∈R '.

Definition 2. Given a set of concrete routes C, a set of symbolic

routes R is said to be a partition of C, denoted as ⊗(C) = R, if the

following conditions hold [21]:

• Every symbolic route in R is a subset of C:

∀' ∈ R, '̄ ⊆ C. (8)

• The union of symbolic routes in R is equal to C:
⋃

'∈R

'̄ = C (9)

• If two concrete routes are included in the same symbolic route,

they have the same attributes:

∀A1, A2 ∈ C, ' ∈ R, A1 ∈ ' ∧ A2 ∈ ' ⇒ A1 .0CCAB = A2 .0CCAB . (10)

As an example, if C = {A1, A2}, then we have:

⊗({A1, A2}) =

{

{'1, '2}, if A1 .0CCAB ≠ A2 .0CCAB

{'3}, if A1 .0CCAB = A2 .0CCAB
(11)

, where

'1 = ({(A1 .3, A1 .4)}, A1 .0CCAB)

'2 = ({(A2 .3, A2 .4)}, A2 .0CCAB)

'3 = ({(A1 .3, A1 .4), (A2 .3, A2 .4)}, A1 .0CCAB)

Since the number of unique attributes di�ers for di�erent time C

and node D, we use AC
D to denote the set of unique attributes on

node D at time C .

Symbolic Network State. Since EPVP is processing symbolic

routes, at any time C , the symbolic network state computed by

EPVP is:

ÎD =

⊗

(
⋃

?∈%,4∈E

I?,D,4) (12)

Ŝ
C
D = ÎD ⊕̂

ˆ⊕
(

⋃

(D,E) ∈�

(
⋃

0′∈A
l (C,D,E)
E

ˆ5DE ('
l (C,D,E)
0′,E

)))

=

⋃

0∈AC
D

'CD,0 (13)

, where Equation (12) corresponds to line 1 in Algorithm 1, and

Equation (13) corresponds to line 9 to line 12 in Algorithm 1.

Note that ŜC is de�ned by de�ning ŜCD for each node D instead of

for each pre�x ? and node D as for SC . Since pre�xes are included

in the destination-environment pair set of symbolic routes. To

distinguish functions applied on concrete and symbolic routes, we

Expresso: Comprehensively Reasoning About External Routes Using Symbolic Simulation ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

use ⊕̂ and 5̂ to denote merge and transfer functions for symbolic

routes.

D.2 Theorems and Proofs

To prove that the symbolic routes computed by EPVP contains no

more or no less concrete routes, we have to prove that at every

time C , the symbolic network state ŜC computed by Expresso is

equivalent to the combined network state SC .

Before proving for the equivalence of SC and ŜC , we �rst lift

the merge and transfer functions to a set of concrete or symbolic

routes (i.e., De�nition 3 - 6), and prove two lemmas that state the

equivalence of concrete and symbolic merge (transfer) functions

(i.e., Lemma 1, 2).

Definition 3. Applying the merge function ⊕ on a set of concrete

routes C is de�ned as merging the concrete routes in C pairwise. That

is, ⊕(C) =
⋃

A8 ,A 9 ∈C,A8≠A 9 A8 ⊕ A 9 . It represents the most preferred

routes in C that are selected as best routes. More generally, merging a

set of concrete route sets C is de�ned as ⊕(C) = ⊕(
⋃

C∈C C).

Definition 4. Applying a transfer function 5 on a set of concrete

routes C is de�ned as applying it on the concrete routes in C separately.

That is, 5 (C) = {5 (A8) |A8 ∈ C ∧ 5 (A8) ≠ ∞}. More generally, trans-

ferring a set of concrete route sets C is de�ned as 5 (C) = 5 (
⋃

C∈C C).

Definition 5. Applying the merge function ⊕̂ on a set of symbolic

routes R is de�ned as merging the symbolic routes in R pairwise. That

is, ⊕̂(R) =
⋃

'8 ,' 9 ∈R,'8≠' 9
'8 ⊕̂' 9 . More generally, merging a set of

symbolic route sets R is de�ned as ⊕̂(R) = ⊕̂(
⋃

R∈R R).

Definition 6. Applying a transfer function 5̂ on a set of symbolic

routes R is de�ned as applying it on the symbolic routes in R sepa-

rately. That is, 5̂ (R) =
⋃

'8 ∈R 5̂ ('8). More generally, transferring a

set of symbolic route sets R is de�ned as 5̂ (R) = 5̂ (
⋃

R∈R R).

Lemma 1. The merge function for symbolic routes is sound and

complete to the union operation, that is ⊕('1 ∪ '2) = '1⊕̂'2.

This lemma states that merging symbolic routes (i.e., '1⊕̂'2)

equals merging concrete routes (⊕('1∪'2)), every route that should

be selected as the best route is indeed selected.

Proof. We prove Lemma 1 by cases. □

For every A1 ∈ '1 and A2 ∈ '2:

case 1 (d (A1 .0CCAB) = d (A2 .0CCAB)):

On one hand, A1 and A2 have the same preference, thus both can be

selected as best routes, i.e.,

A1 ∈ ⊕('1 ∪ '2) and A2 ∈ ⊕('1 ∪ '2) .

On the other hand, since '1 .0CCAB = A1 .0CCAB and '2 .0CCAB = A2 .0CCAB ,

we have '1⊕̂'2 = {'1, '2}, which means

A1 ∈ '1 ∧ '1 ⊆ '1⊕̂'2 ⇒ A1 ∈ '1⊕̂'2, and

A2 ∈ '2 ∧ '2 ⊆ '1⊕̂'2 ⇒ A2 ∈ '1⊕̂'2 .

Therefore, in this case, A1 and A2 are included in both ⊕('1 ∪ '2)

and '1⊕̂'2.

case 2 (d (A1 .0CCAB) > d (A2 .0CCAB)):

On one hand, A1 is preferred than A2, thus only A1 can be selected

as best route, i.e.,

A1 ∈ ⊕('1 ∪ '2) and A2 ∉ ⊕('1 ∪ '2) .

One the other hand, since '1 .0CCAB = A1 .0CCAB and '2 .0CCAB =

A2 .0CCAB , we have '1⊕̂'2 = {'1, ('2 .D ∧ ¬'1 .D, '2 .0CCAB)}, which

means

A1 ∈ '1 ∧ '1 ⊆ '1⊕̂'2 ⇒ A1 ∈ '1⊕̂'2, and

A2 ∉ '1 ∧ A2 ∉ ('2 .D ∧ ¬'1 .D, 0) ⇒ A2 ∉ '1⊕̂'2 .

Therefore, in this case, A1 is included in both ⊕('1 ∪'2) and '1⊕̂'2
while A2 isn’t.

case 3 (d (A1 .0CCAB) < d (A2 .0CCAB)): Similar to case 2.

conclusion: According to the above cases, we have

∀A1 ∈ '1, A1 ∈ ⊕('1 ∪ '2) ⇔ A1 ∈ '1⊕̂'2, and

∀A2 ∈ '2, A2 ∈ ⊕('1 ∪ '2) ⇔ A2 ∈ '1⊕̂'2,

which means ⊕('1 ∪ '2) = '1⊕̂'2.

Lemma 2. The transfer functions for symbolic routes are sound and

complete to the union operation, that is, 5 ('1 ∪'2) = 5̂ ('1) ∪ 5̂ ('2).

This lemma states that transferring symbolic routes (i.e., 5̂ ('1) ∪ 5̂ ('2))

equals transferring concrete routes (i.e., 5 ('1 ∪ '2), every route

that should be permitted (denied) is indeed permitted (denied) in

Expresso.

Proof. We prove Lemma 2 by cases. □

By de�nition (Equation (3)), we have:

5̂ = {(U1, 51), · · · , (U=, 5=)}

For every A ∈ '1 ∪ '2:

case 1 (A is permitted by 5):

On one hand, we have:

5 (A) ≠ ∞⇒ 5 (A) ∈ 5 ('1 ∪ '2).

On the other hand, suppose A ∈ '1, we have:

∃8 ∈ [1, =] : A ∈ U8 ∧ '1 and 58 (U8 ∧ '1) ≠ ∅,

which means:

5 (A) ∈ 5̂ ('1) ⇒ 5 (A) ∈ 5̂ ('1) ∪ 5̂ ('2) .

Therefore, 5 (A) is included in both 5 ('1 ∪ '2) and 5̂ ('1) ∪ 5̂ ('2).

case 2 (A is denied by 5):

On one hand, we have:

5 (A) = ∞⇒ 5 (A) ∉ 5 ('1 ∪ '2).

On the other hand, suppose A ∈ '1 we have:

∃8 ∈ [1, =] : A ∈ U8 ∧ '1 and 58 (U8 ∧ '1) = ∅,

which means:

5 (A) ∉ 5̂ ('1).

Similarly, if A ∈ '2, we have:

5 (A) ∉ 5̂ ('2).

Thus, we have:

5 (A) ∉ 5̂ ('1) ∧ 5 (A) ∉ 5̂ ('2) ⇒ 5 (A) ∉ 5̂ ('1) ∪ 5̂ ('1) .

Therefore, 5 (A) is not in both 5 ('1 ∪ '2) and 5̂ ('1) ∪ 5̂ ('2).

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Dan Wang, Peng Zhang, and Aaron Gember-Jacobson

conclusion: According the above cases, we have

∀A ∈ '1 ∪ '2, 5 (A) ∈ 5 ('1 ∪ '2) ⇔ 5 (A) ∈ 5̂ ('1) ∪ 5̂ ('2),

which means 5 ('1 ∪ '2) = 5̂ ('1) ∪ 5̂ ('2).

Theorem 3. Given an asynchronous schedule) = (g, l), at any

time C and node D, the Expresso network state ŜCD computed by merg-

ing and transferring symbolic routes is equivalent to the combined

network state SCD computed by merging and transferring concrete

routes. Since SCD is a set of concrete routes and ŜCD is a set of symbolic

routes, the equivalence is formally represented as ŜCD = S
C
D .

Proof. We prove for Theorem 3 by strong induction on the time

C . □

case (C = 0): By de�nition ÎD =
⊗

(
⋃

?∈%,4∈E I?,D,4) =
⊗

(ID).

Since ⊗ satis�es the Equation (9), we can conclude that ÎD = ID .

case C : To show ŜCD = S
C
D , there are two cases to consider.

(1) The �rst is that D ∉ g (C). In this case: we have

S
C
D = S

C−1
D , and ŜCD = Ŝ

C−1
D

From the inductive hypothesis, we know

S
C−1
D = ŜC−1D ,

therefore, we have

S
C
D = ŜCD .

(2) The second case is where D ∈ g (C). In this case, we have

S
C
D =

⋃

4∈E,?∈%

(�?,D,4 ⊕
⊕

(D,E) ∈�

5DE ((
l (C,D,E)
?,E,4)), and

Ŝ
C
D = ÎD ⊕̂

ˆ⊕
(

⋃

(D,E) ∈�

(
⋃

0′∈A
l (C,D,E)
E

ˆ5DE ('
l (C,D,E)
E,0′

)))

According to De�nition 3 and De�nition 4, we have:

S
C
D =

⋃

4∈E,?∈%

�?,D,4 ⊕
⊕

(D,E) ∈�

5DE (
⋃

4∈E,?∈%

(
l (C,D,E)
?,E,4)

= ID ⊕
⊕

(D,E) ∈�

5DE (S
l (C,D,E)
E) . (14)

Since l (C,D, E) < C , by hypothesis, we have:

S
l (C,D,E)
E = Ŝ

l (C,D,E)
E .

By de�nition of Expresso network state and unfolding, we have:

Ŝ
l (C,D,E)
E =

⋃

0′∈A
l (C,D,E)
E

'
l (C,D,E)
E,0′

=

⋃

0′∈A
l (C,D,E)
E

'
l (C,D,E)
E,0′

.

Therefore, Equation (14) is transformed into:

S
C
D = ID ⊕

⊕

(D,E) ∈�

5DE (
⋃

0′∈A
l (C,D,E)
E

'
l (C,D,E)
E,0′

).

According to Lemma 2, the above equation is transformed into:

S
C
D = ID ⊕

⊕

(D,E) ∈�

⋃

0′∈A
l (C,D,E)
E

5̂DE ('
l (C,D,E)
E,0′

) .

According to Lemma 1, the above equation is transformed into:

S
C
D = ID ⊕

ˆ⊕

(D,E) ∈�

(
⋃

0′∈A
l (C,D,E)
E

5̂DE ('
l (C,D,E)
E,0′

)).

Since for case C = 0, we have ID = ÎD , the above equation is trans-

formed into:

S
C
D = ÎD ⊕

ˆ⊕

(D,E) ∈�

(
⋃

0′∈A
l (C,D,E)
E

5̂DE ('
l (C,D,E)
E,0′

)).

Again, according to Lemma 1, the above equation is transformed

into:

S
C
D = ÎD ⊕̂

ˆ⊕

(D,E) ∈�

(
⋃

0′∈A
l (C,D,E)
E

5̂DE ('
l (C,D,E)
E,0′

)) .

According to De�nition 5, the above equation is transformed into:

S
C
D = ÎD ⊕̂

ˆ⊕
(

⋃

(D,E) ∈�

(
⋃

0′∈A
l (C,D,E)
E

5̂DE ('
l (C,D,E)
E,0′

))) .

We can observe that the right hand side of the above equation is

Ŝ
C
D , which means:

S
C
D = ŜCD .

	Abstract
	1 Introduction
	2 Motivation
	2.1 Why Arbitrary External Routes?
	2.2 Verification Tasks
	2.3 Related Work

	3 Overview
	3.1 Key Insights
	3.2 Workflow of Expresso

	4 Symbolic Route Computation
	4.1 Routing Algebra and Simple Path Vector Protocol
	4.2 Symbolic routes
	4.3 Processing symbolic routes

	5 Symbolic Packet Forwarding
	5.1 Generating Symbolic FIBs
	5.2 Computing PECs

	6 Property Analysis
	6.1 Routing properties
	6.2 Forwarding properties
	6.3 More properties

	7 Evaluation
	7.1 Property Violations Found by Expresso
	7.2 Performance on the CSP's WAN
	7.3 Performance on the Internet2

	8 Limitations
	9 Conclusion
	References
	A Simple Path Vector Protocol Algorithm
	B Algorithm for Transfer Function
	C Modification to Minesweeper
	D Correctness Proof for EPVP
	D.1 Asynchronous schedule and network states
	D.2 Theorems and Proofs

